Напряжение на вторичной обмотке зарядного устройства. Простое зарядное устройство своими руками. Что нужно сделать

Неоднократно автолюбитель сталкивался с проблемой зарядки свинцового аккумулятора автомобиля. С учетом типа и емкости стартерных аккумуляторов (45-120 Ампер/часов) нужно подобрать довольно мощное зарядное устройство, которое может долговременно обеспечивать зарядный ток.

Зарядный ток кислотного аккумулятора должен составлять десятую часть емкости самого аккумулятора, иными словами, если аккумулятор на 60 Ампер/часов, то зарядное устройство должно заряжать его током 6 Ампер. Такой ток получить довольно сложно, если задействовать сетевой трансформатор.

Давайте сделаем небольшой подсчет. Напряжение зарядного устройства составляет 14-14.4 Вольт, с учетом тока 6 ампер, вам будет нужен трансформатор с примерной мощностью 14.5х6 ватт, с учетом потерь в узла управления, трансформаторе и диодах транс должен быть как минимум на 100 ватт и это только для аккумуляторов не более 60 Ампер.

Для строения универсального зарядного устройства трансформаторы нужны ватт на 150-200 ватт.
Сетевой трансформатор на такую мощность найти можно, но опять же – рулят импульсные схемы из-за низкой стоимости, малых размеров, легкого веса и это еще не все.

Хотя и свинцовые аккумуляторы малочувствительны к параметрам зарядного устройства, но желательно иметь стабилизированное зарядное устройство. Если к примеру собрать зарядку для аккумулятора на основе сетевого трансформатора, добавить к нему диодный выпрямитель (который будет недурно нагреваться в ходе работы) далее собрать узел регулировки тока заряда и добавить напоследок стабилизацию, то мы получим как минимум 20% потерь на тепло. Те же функции можно без проблем реализовать с импульсными блоками питания, но уже с минимальными потерями.

LED драйверы для светодиодных лент сегодня довольно популярны. В продаже можно встретить такие блоки буквально любой мощности – от пару десятков ватт до 1киловатт. Эти блоки удобны тем, что выдают на выходе стабилизированное напряжение, которое можно регулировать в пределах 9-14,5 Вольт – то, что нам нужно. В моем варианте для обзора был куплен блок питания с током 15 Ампер, заявленная производителем мощность составляет 180 ватт. Все, что нам нужно, это сетевой шнур, амперметр с током 10-15 Ампер (цифровой или стрелочный, можно и простой мультиметр в режиме амперметра)

Подключаем сетевой шнут к соответствующим контактным клеммам блока питания, подключаем БП в сеть 220 Вольт. Дальше должен гореть зеленый светодиод, что свидетельствует о наличии выходного напряжения бп.
Далее последовательным образом подключаем в разрыв плюсовой шины наш амперметр, минус с блока питания напрямую подключается к минусу аккумулятора. Этим процесс завершен. Ток по сути зависит от напряжения заряда, а напряжение мы можем выставит с помощью переменника, который имеется на плате блока питания.

Несколько слов о конструкции драйвера (блока питания) светодиодных лент.

Такие драйверы для светодиодных лент выпускаются в алюминиевых корпусах, со всеми удобствами, следовательно, в дополнительном корпусе нет нужды. Все активные компоненты укреплены на теплоотвод, в роль которого играет корпус блока питания.

Схема схожа с компьютерным блоком питания – тот же полумостовой понижающий иип построенный на ШИМ контроллере ТЛ494. В качестве силовых ключей задействованы мощные высоковольтные биполяшки серии MJE13009.
Спереди размещена контактная площадка с клеммами входа сетевого питания и выходных шин 12 Вольт.

Рядом с контактами имеется небольшой регулятор, которым можно выставить выходное напряжение в пределах 9-14.5 Вольт.

На плате бп также реализован довольно хороший сетевой фильтр, встроенный на плату предохранитель и разрядная цепь для мощных конденсаторов полумоста. Параллельно вторичной и первичной обмотке можно увидеть цепи снаббера.

Регулировка выходного напряжения осуществляется микросхемой ТЛ431 – довольно часто применяют в импульсных источниках питания.

При желании заменой одного резистора в обвязке TL431 можно поднять выходное напряжение блока питания до 22-х Вольт, но в таком случае нужно заменить выходные электролиты, которые рассчитаны на 25 Вольт.

Сетевой фильтр на входе питания состоит из дросселя с двумя независимыми обмотками. Перед и после дросселя стоят пленки 0,1мкФ. Параллельно этим конденсаторам стоят разряжающие резисторы на пару сотен килоом, для разрядки конденсаторов после отключения бп.

Также в цепи сетевого питания стоит варистор, который предназначен для снижения пускового тока блока, в момент подачи сетевого напряжения.

Также в блоке питания предусмотрено заземление.

Не каждый владелец авто имеет у себя в гараже зарядное устройство для аккумулятора . В этой статье описаны этапы создания своими руками качественного зарядного устройства , в котором можно регулировать выходное напряжение, и работать в нескольких режимах заряда аккумулятора. Схема зарядного устройства весьма проста и надежна.

Каждый начинающий радиолюбитель в состоянии создать такой нужный прибор. В зарядном устройстве используется трансформатор с выходной мощностью 200 – 300 Ватт.

Можно использовать трансформатор от советского лампового телевизора, так как на его сердечнике расположены две одинаковые обмотки рассчитаны на напряжение 6-7 В и силу тока 10 А. Для того, чтобы получить на выходе напряжение 12 – 24 В, необходимое для зарядки аккумуляторной батареи, нужно подключить обмотки последовательно. В электрической схеме изображенной в этой статье, используется трансформатор с мощностью 400 Ватт.



Сетевая обмотка трансформатора имеет сечение провода 0,5 мм и содержит 500 витков. Наматывать витки на сердечник нужно аккуратно, виток к витку. Каждые 100 витков необходимо ставить изоляцию из плотной бумаги. Вторичная обмотка намотана проводом диаметром 1,5-3 мм. 4-5 витков при рабочей частоте 50 Гц обеспечивает питание 1 В.

Таким образом нужно намотать обмотку на 18 В – это примерно 90 витков. С трансформатором мы уже разобрались, пришел черед электронной части зарядного устройства. Диодный мост очень мощный. Диоды, используемые в схеме взяты от генератора автомобиля, их нужно установить на радиатор, и обеспечить охлаждение конструкции. Перегрев диодов категорически не допускается.



Транзистор КТ819 нужно брать в металлическом корпусе. Вместо КТ819 можно использовать КТ814, но только в крайнем случае. Этот элемент электрической схемы также устанавливаем на радиатор. Переменный резистор для схемы подбираем из расчета необходимого сопротивления в 150 Ом и номинальной рабочей мощностью 5 Ватт.

Для таких целей хорошо подойдет тиристор отечественного производства КУ202Н, или же другой аналог. Переменный резистор регулирует нужное выходное напряжение, что позволяет работать устройству в нескольких режимах: быстрая зарядка – 18 В, средняя зарядка – 16 В, умеренная зарядка – 14 В.



Устройство нужно оснастить куллером . Для этих целей отлично подойдет куллер от компьютерного блока питания. Охлаждение трансформатора необходимо, так как витки вторичной обмотки выполнены из алюминия, и в процессе быстрой зарядки аккумулятора могут перегреться. Вентилятор непосредственно подключен к выходу зарядного устройства, его обороты возрастают с установленным напряжением зарядки.

Схема зарядного устройства для автомобильных аккумуляторов приведена на рисунке. В качестве силового трансформатора я обычно использовал сетевые трансформаторы от старых телевизоров, например ТС-180. С катушек трансформатора удаляются все вторичные обмотки, а в качестве первичной на 220 вольт, используются все витки первичной обмотки трансформатора.

Пример.

Трансформатор ТС-180 имеет полное количество витков первичной обмотки W1 = 866 = 375+58+375+58. Чем больше количество витков, тем меньше ток холостого хода трансформатора, тем менее ощутимы последствия бросков напряжения в первичной сети, поэтому я всегда использую максимально-возможное количество витков.
Далее находим количество витков на один вольт W1/220В = 866/220 = 4витка. Для получения 24В во вторичной обмотке трансформатора нам необходимо намотать W2 = 24×4 = 96 витков т.е. по 48 витков на каждой катушке и впоследствии соединить эти катушки синфазно последовательно. При этом диаметр провода вторичной обмотки равен В = 0,7 корней из тока обмотки трансформатора. Так как при однополупериодном выпрямлении во вторичной обмотке присутствует постоянная составляющая, которая дополнительно способствует разогреву трансформатора, то диаметр провода менее двух миллиметров выбирать не стоит. При отсутствии толстого провода, модно намотать каждую катушку по 96 витков и соединить их синфазно параллельно. При этом диаметр провода надо пересчитать.

Для вторичной обмотки мы выбрали провод диаметром 2мм. При этом площадь поперечного сечения его составит S₁ = π∙R² = π∙D²/4 = 3,14мм².
Находим площадь сечения нового провода S₂ = 3,14/2 = 1,57мм².
Вычисляем диаметр этого провода D ≈1,41мм.

Данные на другие сетевые трансформаторы от телевизоров можно узнать здесь

Резистор R2 — автомобильная лампочка на 21Вт. Она выполняет функцию нагрузки для разрядного тока между импульсами зарядного тока. Вместо лампочки можно применить резистор ПЭВ-25 сопротивлением примерно 30 Ом.
Диод в цепи управляющего электрода тиристора можно применить любой от выпрямителя старого телевизора. Переменный резистор — лучше бы проволочный.

Правильный заряд аккумуляторной батареи является одним из наиболее важных условий, позволяющих обеспечить длительный срок их службы. Важно правильно спроектировать зарядное устройство, чтобы обеспечить оптимальный режим заряда батареи для восстановления номинальной ёмкости, определяющей количество электричества, которое может отдать полностью заряженный аккумулятор. Заряд аккумуляторной батареи, как правило, осуществляется в две ступени. На первой ступени рекомендуется заряжать аккумулятор неизменным по значению током IЗ = 0,25САБ. При этом аккумулятор получает основную часть энергии, в пределах 95 %. Зарядка аккумулятора на второй ступени происходит при стабильном напряжении. Этот режим обычно называют режимом подзаряда и используют для компенсации уменьшения емкости аккумулятора, вызванного токами саморазряда.

Зарядное устройство выполнено на базе непосредственного преобразователя постоянного напряжения НПН понижающего типа. Регулирование выходного напряжения в нем осуществляется за счет изменения относительной длительности открытого состояния силового транзистора при использовании широтно-импульсного регулирования. Частота преобразования зарядного устройства fЗУ = 22 кГц.

Исходными данными для расчета зарядного устройства являются входное напряжение, выходное напряжение, ток и характеристики АБ. Используем в качестве питающего выпрямленное напряжение сети. Заряд аккумуляторной батареи может осуществляться только при условии, что напряжение питающей сети находится в допустимом диапазоне.

Для однофазной питающей сети переменного тока с бестрансформаторным входом для СГЭП выберем мостовую схему выпрямителя с индуктивно-ёмкостным фильтром . При учете диапазона изменения напряжения питающей сети (отклонение вниз от номинала на 10%) значение напряжения на выходе входного фильтра не превышает UВХmin = 1,41Uсmin = 1,41·99 = 139 В даже на холостом ходу (конденсатор входного фильтра заряжен до напряжения, равного амплитуде напряжения питающей сети). В рабочем режиме UВХmin будет еще ниже на величину падения напряжения на диодах выпрямителя. Так как вход выпрямителя бестрансформаторный, коммутационными потерями можно пренебречь и величину выпрямленного напряжения можно считать по соотношениям для идеального выпрямителя.

Наибольшее значение напряжения на выходе фильтра определится из выражения (холостой ход - конденсатор фильтра заряжен до амплитуды входного напряжения):

Выходные параметры зарядного устройства определяются параметрами АБ. Выходное напряжение зарядного устройства для заряда АБ типа FG20721 c номинальным напряжением UАБ = 12·3 = 36 В и емкостью САБ = 6,5 Ач, работающей в цикличном режиме, определяется по выражению:

где 2,45 В - максимальное напряжение на элементе АБ;

m = 6 - количество элементов в секции;

n = 3 - количество секций в батарее.

Для выбора величины тока заряда АБ необходимо знать не только емкость АБ, но и интервалы времени между аварийными режимами (время, предоставленное для восстановления необходимой емкости АБ). Статистические данные выхода напряжения сети переменного тока за допустимые пределы - 1-2 раза в сутки. В этом случае для восстановления емкости АБ зарядный ток можно выбрать равным 0,2 САБ = 1,3А.

Для расчета параметров и выбора элементов силовой цепи зарядного устройства необходимо определить диапазон изменения относительной длительности открытого состояния транзистора зарядного устройства:

Для выбора величины индуктивности дросселя, кроме величины гmin, необходимо определиться с амплитудой пульсаций зарядного тока. Так как АБ не предъявляет особых требований к форме зарядного тока, то выберем величину пульсаций произвольно - допустим 10%.

Определим величину индуктивности по выражению:

Соединим параллельно три дросселя Д17-2 с параметрами: L = 2 мГн; Iподм = 6,3 А; Rобм = 0,3 Ом при последовательном соединении двух обмоток дросселя.

Т.к. АБ в СГЭП подключена постоянно, то выходной конденсатор ЗУ применяется для подавления высокочастотных помех. Выбираем конденсатор С10 - К73-17 - 100В - 1 мкФ±5%.

Рассчитаем параметры силового транзистора зарядного устройства. Максимальное напряжение, прикладываемое к силовому транзистору VT1 в закрытом состоянии определяется наибольшим выпрямленным напряжением:

Ток, протекающий через транзистор, равен току заряда:

Выбираем MOSFET-транзистор VT1 - IRF624 фирмы International Rectifier с параметрами: UСИmax = 250 В; IСmax = 4,4 А; RСИ = 1,1 Ом, tВКЛ = 20 нс, tВЫКЛ = 32 нс.

Статические потери в транзисторе:

Используя линейную аппроксимацию временной зависимости тока и напряжения в режиме переключения транзистора, определим динамические потери в нем по выражению:

Суммарные потери мощности на транзисторе:

не требуют установки транзистора на радиатор.

Максимальное обратное напряжение, прикладываемое к диоду VD4 определяется наибольшим выпрямленным напряжением:

Среднее значение тока, протекающего по диоду, равно:

Выбираем диод VD4 - MUR240 фирмы ON Semiconductor, имеющий характеристики: UОБРmax = 400 В; IПР = 2 А; IИМП = 25 А; UПР = 1,05 В; tВОССТ = 65 нс.

Для ограничения сквозного тока, протекающего через диод при включении транзистора за время восстановления запирающих свойств диода, устанавливают балластный (ограничительный) дроссель L5, индуктивность которого определяют по выражению:

Выбираем дроссель Д13-3 с параметрами: L = 5 мкГн; Iподм = 4 А; Rобм = 0,015 Ом при последовательном соединении двух обмоток дросселя.

Сопряжение цепи управления силовым ключом зарядного устройства с выходом схемы управления (микроконтроллером) требует обеспечения гальванической развязки и согласования управляющего сигнала по мощности. Для этого воспользуемся микросхемой драйвера нижнего уровня с ограничением тока DA1 - IR2121 фирмы International Rectifier и трансформатором TV1. Основные параметры драйвера приведены в таблице 2.1 .

Выберем фильтрующие конденсаторы по цепи питания микросхемы драйвера C1, C2 - К10-79 - 25В - 1 мкФ±20% Н30.

Конденсатор C5 необходим для создания напряжения разной полярности на трансформаторе драйвера TV1:

Выбираем конденсатор C5 - К10-79 - 25В - 2 мкФ±5%.

Таблица 2.1 - Основные параметры драйвера IR2121

Параметр

Значение

150 нс / 150 нс

Рассчитаем трансформатор драйвера TV1. Для данного трансформатора выберем тип конструкции - тороид, магнитный материал сердечника - прессованный ферроматериал марки 2000НМ.

Коэффициент трансформации k = 1.

Средние значения напряжения на первичной и вторичной обмотках трансформатора U1 = U2 = 12 В.

Наибольшее среднее значение тока в первичной обмотке I1 = I2 = IД гmax = 0,5 А.

Рассчитаем габаритную мощность трансформатора:

По известным токам и напряжениям обмоток и габаритной мощности трансформатора выбирается сердечник и определяются параметры обмоток, при этом число витков первичной обмотки рассчитывается исходя из наибольшего напряжения, прикладываемого к ней, чтобы исключить режим насыщения (замагничивания) сердечника трансформатора.

где SО - площадь окна сердечника магнитопровода [см2];

SС - поперечное сечение сердечника [см2];

kф - коэффициент формы напряжения (для прямоугольного сигнала - kф = 1);

kс - коэффициент заполнения сердечника сталью (для трансформаторов, выполненных на сердечниках из прессованных ферроматериалов kс = 1);

д - плотность тока в обмотках трансформатора (среднее значение для многовитковых трансформаторов равно 2,5 А/мм2);

у - коэффициент заполнения окна сердечника медью (для проводов круглого сечения в пределах от 0,2 до 0,35), примем у = 0,3;

Bм - индукция в магнитопроводе (для трансформаторов, выполненных на сердечниках из прессованных ферроматериалов индукция не превышает 0,2 Тл).

Выбираем сердечник из стандартного ряда магнитопроводов К16х8х6, имеющий SОSС = 0,12 см4, SО = 0,501 см2, SС = 0,24 см2.

Число витков в обмотках трансформаторов:

Диаметры проводов обмоток:

выбираем по одному проводу для каждой обмотки ПЭВ-1 с диаметром провода без изоляции равным 0,51 мм (диаметр провода с изоляцией равен 0,56 мм).

Диод VD2 служит для предотвращения появления на выходе микросхемы драйвера выбросов выходного напряжения ниже уровня земли во время процесса выключения. Максимальное обратное напряжение на диоде UОБРmax = 12 В, максимальный средний ток диода равен IVDmax = 0,5 А. Выбираем диод VD2 - КД289А с параметрами: UОБРmax = 25 В; IVDmax = 1 А; fmax = 100 кГц.

Конденсатор C6, а также диод VD3 необходимы для восстановления формы и амплитуды управляющих сигналов с драйвера после трансформатора TV1. Конденсатор C6 = C5 = 2 мкФ.

Максимальное обратное напряжение на диоде VD3 UОБРmax = 12 В, максимальный средний ток диода равен IVDmax = 0,5 А.Выбираем диод VD3 - КД289А (UОБРmax = 25 В; IVDmax = 1 А; fmax = 100 кГц).

Резистор в цепи затвора необходим для ограничения тока управления силовым транзистором ЗУ. Примем максимальное значение тока затвора транзистора IЗmax = 1 А. Рассчитаем сопротивление ограничивающего резистора:

Мощность, рассеиваемая на резисторе:

Выбираем резистор R3 - С2-33 - 0,125 - 12 Ом ±5%.

Сейчас нет смысла собирать самостоятельно зарядное устройство для автомобильных аккумуляторов: в магазинах огромный выбор готовых устройств, цены на них приемлемы. Однако не будем забывать о том, что приятно что-то сделать полезное своими руками, тем более что простое зарядное устройство для автомобильного аккумулятора вполне можно собрать из подручных деталей, и цена его будет копеечной.

Единственное, о чем сразу стоит предупредить: схемы без точной регулировки тока и напряжения на выходе, которые не имеют отсечки тока по окончании заряда, пригодны для зарядки только свинцово-кислотных аккумуляторов. Для AGM и использование подобных зарядок приводит к повреждению аккумуляторной батареи!

Как сделать простейшее трансформаторное устройство

Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа.

По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства. Диодный мост берётся любой с прямым током более 5 ампер или собрать его из четырех отдельных диодов, с теми же требованиями к току подбирается и измерительный амперметр. Главное – разместить его на радиаторе, который в простейшем случае представляет собой алюминиевую пластину не менее 25 см2 площадью.

Примитивность такого устройства – не только минус: за счет того, что у него нет ни регулировки, ни автоматического отключения, оно может использоваться для «реанимации» сульфатированных аккумуляторов. Но не нужно забывать и об отсутствии защиты от переполюсовки в этой схеме.

Главная проблема – где найти трансформатор подходящей мощности (не менее 60 Вт) и с заданным напряжением. Можно использовать, если подвернется советский накальный трансформатор. Однако его выходные обмотки имеют напряжение 6,3В, поэтому придется соединять две последовательно, одну из них отмотав так, чтобы в сумме на выходе получить 10В. Подойдет недорогой трансформатор ТП207-3, у которого вторичные обмотки соединяются следующим образом:

Отматываем при этом обмотку между клеммами 7-8.

Простое зарядное устройство с электронной регулировкой

Однако можно обойтись и без отмотки, дополнив схему электронным стабилизатором напряжения на выходе. К тому же такая схема будет удобнее в гаражном применении, так как позволит скорректировать ток заряда при просадках напряжения питания, ее используют и для автомобильных аккумуляторов небольшой емкости при необходимости.

Роль регулятора здесь выполняет составной транзистор КТ837-КТ814, переменный резистор регулирует ток на выходе устройства. При сборке зарядки стабилитрон 1N754A можно заменить советским Д814А.

Схема регулируемого зарядного устройства проста для повторения, и легко собирается навесным монтажом без необходимости в травлении печатной платы. Однако учтите, что полевые транзисторы размещаются на радиаторе, нагрев которого будет ощутим. Удобнее воспользоваться старым компьютерным кулером, подключив его вентилятор к выходам зарядного устройства. Резистор R1 должен иметь мощность не менее 5 Вт, его проще намотать из нихрома или фехраля самостоятельно или соединить параллельно 10 одноваттных резисторов по 10 ом. Его можно и не ставить, но нельзя забывать, что он защищает транзисторы в случае замыкания выводов.

При выборе трансформатора ориентируйтесь на выходное напряжение 12,6-16В, берите либо накальный трансформатор, соединив последовательно две обмотки, либо подбирайте готовую модель с нужным напряжением.

Видео: Самое простое зарядное устройство для АКБ

Переделка зарядного устройства от ноутбука

Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста.
Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:

В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками.

Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.

Видео: Зарядка для аккумуляторов авто. Защита от короткого замыкания и переполюсовки. Своими руками

Выпаиваем резистор и вместо него устанавливаем подстроечный, заранее настроенный по мультиметру на то же сопротивление. Затем, подключив к выходу зарядного устройства нагрузку (лампочку из фары), включаем в сеть и плавно вращаем движок подстроечника, одновременно контролируя напряжение. Как только мы получим напряжение в пределах 14,1-14,3 В, отключаем ЗУ из сети, фиксируем движок подстроечного резистора лаком (хотя бы для ногтей) и собираем корпус обратно. Это займет не больше времени, чем Вы потратили на чтение этой статьи.

Есть и более сложные схемы стабилизации, причем их уже можно встретить и в китайских блоках. Например, здесь оптопарой управляет микросхема TEA1761:

Однако принцип настройки тот же: меняется сопротивление резистора, впаянного между плюсовым выходом блока питания и 6 ножкой микросхемы. На приведенной схеме для этого использованы два запараллеленных резистора (таким образом получено сопротивление, выходящее из стандартного ряда). Нам нужно так же впаять вместо них подстроечник и настроить выход на нужное напряжение. Вот пример одной из таких плат:

Путем прозвонки можно понять, что нас интересует на этой плате одиночный резистор R32 (обведен красным) – его нам и надо выпаивать.

В Интернете часто встречаются похожие рекомендации, как сделать самодельное зарядное устройство из компьютерного блока питания. Но учитывайте, что все они по сути – перепечатки старых статей начала двухтысячных, и подобные рекомендации к более-менее современным блокам питания неприменимы. В них уже нельзя просто поднять напряжение 12 В до нужной величины, так как контролируются и другие напряжения на выходе, а они неизбежно «уплывут» при такой настройке, и сработает защита блока питания. Можно использовать зарядные устройства ноутбуков, выдающие единственное напряжение на выходе, они гораздо удобнее для переделки.

Понравилась статья? Поделитесь с друзьями!