Вариация альтернативного признака. Энтропия распределения. Виды дисперсий и правило сложения дисперсий По какой зависимости рассчитывается дисперсия альтернативного признака

Основоположником развития теории средних величин является Адольф Кетле, который считал их важнейшими статистическими показателями. Он первым четко сформулировал тот факт, что на массовые явления (статистические совокупности) влияет два вида причин:

- общие для каждой единицы совокупности, эти причины формируют тип явления и связаны с его сущностью;

- индивидуальные, специфические для каждой единицы совокупности, не связанные с типом явления, то есть случайные для него.

При расчете средней величины в совокупности влияние случайных причин взаимопогашается, и средняя величина, абстрагируясь от индивидуальных особенностей отдельных единиц совокупности, выражает общие свойства, присущие всей совокупности. Кетле считал среднюю величину не просто статистическим показателем, имеющим определенный способ расчета, а категорией объективной реальности.

В настоящее время средняя величина признается также центральным показателем, характеризующим совокупность. И определяют ее как обобщающий показатель, характеризующий типический уровень варьирующего признака. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности .

Вычисление среднего – один из распространенных приемов обобщения; средний показатель выделяет то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае.



Таким образом, в способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей. Следует отметить, что средняя величина будет объективной характеристикой, если она вычислена по качественно однородной совокупности.

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения . Средние величины делятся на два больших класса: степенные средние и структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качествеструктурных средних рассматриваются мода и медиана.

Выбор конкретного вида средней величины зависит от цели исследования и логической сущности усредняемого признака.

Степенные средние в зависимости от представления исходных данных могут быть простыми ивзвешенными .

Простая средняя считается по несгруппированным данным и имеет следующий общий вид:

где X – варианта (значение) осредняемого признака;
m – показатель степени средней;
n – число вариант.

В зависимости от степени m получают различные виды средних величин.

Если же данные сгруппированы, то используется формулы средних взвешенных , где весами выступают частоты f (повторяемость варианты).

Взвешенная средня я считается по сгруппированным данным и имеет общий вид

где X – варианта (значение) усредняемого признака или серединноезначение интервала, в котором измеряется варианта;
m – показатель степени средней;
f – частота, показывающая, сколько раз встречается каждое значение усредняемого признака.



Таблица 7. Виды степенных средних

Вид степенной средней Показатель степени (m) Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая
Арифметическая
Квадратическая
Кубическая

Формулы средневзвешенные могут использоваться для расчета общей по совокупности средней на основе групповых средних.

Таблица 8. Оплата труда по бригадам

Таблица 9. Оплата труда по бригадам

В обеих задачах определяющей функцией является ФЗП.

Прежде, чем выбрать формулу для расчетов средней величины,нужно словами записать логическую сущность усредняемого признака.

Средняя заработная плата = Фонд заработной платы / численность работников

Средняя урожайность = Валовой сбор / Посевная площадь

Средняя производительность труда = Объем продукции / Численность (Время)

Правило: Если в представленной информации есть данные о числителе логической формулы, то есть об определяющей функции, то для расчета средней величины используется средняя гармоническая. Если представлены данные о знаменателе логической формулы, то для расчета средней величины используется средняя арифметическая.

Пример . В течение 8-часового рабочего дня пять рабочих производили одинаковые детали. Их затраты времени на одну деталь, мин.: 20, 16, 20, 15, 24. Определить средние затраты времени на одну деталь.

Средние затраты времени на одну деталь определяются путем деления суммарного времени на число деталей.

480 +480+480+480+480

480:20+480:16+480:20+480:15+480:24

(2400:130=18,46 мин.)

Это - правильный расчет, а неправильно, если сложить все затраты времени на одну деталь и разделить на пять (19 мин.). При таком расчете искажается объем производства деталей (2400:19=126, а не 130, как фактически).

1. Средняя арифметическая постоянной величины равна этой постоянной:

2. Алгебраическая сумма линейных отклонений варианты от средней арифметической равна 0 (нулевое свойство):

для несгруппированных данных,

для сгруппированных данных;

3. Сумма квадратов отклонений варианты от средней арифметической есть число минимальное:

– min (для несгруппированных данных),

– min (для сгруппированных данных);

Эти три свойства определяют сущность средней арифметической. Следующие свойства – расчетные .

4. Если каждую варианту Х уменьшить или увеличить на определенное число, то средняя величина уменьшается или увеличивается на это число.

5. Если каждую варианту Х уменьшить или увеличить в одно и то же число раз, то средняя величина уменьшается или увеличивается в это число раз.

6. Если каждую частоту f уменьшить или увеличить в одно и то же число раз, то средняя величина не изменится.

Доля каждой варианты (d) определяется путем деления каждой частоты на сумму всех частот.

Таким образом средняя величина зависит от варианты Х и от структуры совокупности, которая характеризуется долями d.

7. Средняя суммы равна сумме средних:

Ряд распределения имеет 3 центра:

1) средняя арифметическая;

3) медиана.

Рассчитаем среднюю арифметическую для дискретного ряда распределения, представленного в таблице 1:

При расчете средней величины по интервальному ряду распределения в качестве варианты Х берется середина интервала. Если интервал открытый, то при расчете средней величины его условно закрывают, принимая равным соседнему закрытому интервалу.

Рассчитаем среднюю величину основных средств по таблице 3:

Млрд.руб.

В таблице 5 была рассчитана эта же величина, и она получилась равной 3,3 млрд. руб. (Объяснить различия)

Мода – наиболее часто встречающаяся варианта.

Определим моду тарифного разряда по таблице 1:

Для интервальных рядов распределения сначала находится модальный интервал, то есть интервал с наибольшей частотой внутри этого интервала, затем мода находится по формуле:

Нижняя граница модального интервала;

i - величина модального интервала;

Частота модального интервала;

Частота интервала предшествующего модальному интервалу;

Частота интервала следующего за модальным интервалом.

млрд. руб.

Медиана - варианта, стоящая в середине ряда распределения.

Номер медианы:

№ Ме= - если число единиц в совокупности четное;

№ Ме= - если число единиц в совокупности нечетное.

Найдем медиану тарифного разряда по таблице 1:

Следовательно, половина рабочих цеха имеет разряд не выше 3-го.

Прежде чем найти медиану для интервального ряда распределения, ищут интервал, в который входит срединная варианта, затем внутри этого интервала определяют медиану по формуле:

,

где - нижняя граница медианного интервала;

i- величина медианного интервала;

n- число единиц совокупности;

Накопленная частота интервала предшествующего медианному;

Частота медианного интервала

Найдем медиану основных средств по таблице 3:

млрд.руб.,

То есть половина предприятий имеет основные средства не выше, чем 3,45 млрд. руб.

Ряды распределения, имеющие одинаковую среднюю величину, могут существенно отличаться по степени колеблемости изучаемого признака. (Пример. Средний возраст студентов в группе и бабушки с детьми).

Для характеристики совокупности, особенно, в том случае, если значение признака существенно колеблется, дополнительно к расчету средней величины определяют ряд показателей вариации.

Для измерения вариации используют абсолютные и относительные показатели.

1. Размах вариации: R = X max – X min – диапазон изменения признака.

2. Среднее линейное отклонение – показывает среднее отклонение варианты от средней величины:

Для несгруппированных данных;

3. Среднее квадратическое отклонение - показывает среднее отклонение вариант от средней величины:

- для не сгруппированных данных;

- для сгруппированных данных;

Все 3 показателя имеют те же единицы измерения, что и признак.

4. Дисперсия – квадрат среднего квадратического отклонения:

или

Не имеет единиц измерения.

Свойства дисперсии :

1) D(const)=0, то есть дисперсия постоянной величины равна 0.

2) Если каждую варианту Х уменьшить или увеличить на одно и то же число раз, то дисперсия не изменится;

3) Если каждую варианту Х уменьшить или увеличить в одно и то же число раз i, то дисперсия уменьшится или увеличится в i 2 раз.

Способы расчета дисперсии:

1) исходя из определения:

2) исходя из средней из квадратов вариант:

; ;

Эта формула получена преобразованием основной формулы.

3) по способу моментов:

Первый условный момент;

Второй условный момент;

;

Рассчитаем дисперсию тарифного разряда по данным таблицы 1 двумя способами:

2) =13,75-3,53=1,29

Показатели относительного рассеивания (вариации) .

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер вариации в различных распределениях (колеблемость одного и того же признака в двух совокупностях или колеблемость различных признаков в одной совокупности). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической.

1.Коэффициент осцилляции показывает относительную колеблемость крайних значений признака относительно средней.

2. Относительное линейное отклонение характеризует относительное усредненное значение абсолютных отклонений от средней величины.

3. Коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.


В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

Для более глубокого анализа колеблемости признаков также используют показатели дифференциации.

1. По несгруппированным первичным данным можно рассчитать коэффициент фондовой дифференциации :

,

где - средняя величина, рассчитанная для 10% самых больших значений признака.

Средняя величина, рассчитанная для 10% самых маленьких значений признака.

2. Если данные сгруппированы, то рассчитывают коэффициент децильной дифференциации :

Где и - соответственно 1 и 9 децили.

Дециль - значение признака, которому в ряду распределения соответствует 10-я доля совокупности, то есть децили делят совокупность на 10 равных частей..

Процедура нахождения децилей аналогична процедуре нахождения медианы для интервального ряда распределения:

1) определяют № децили: для 1-й децили: № = ;

для 9-й децили: № = ;

2) находят интервалы, в которые входят эти децили и внутри этих интервалов находят децили по формулам:

; ,

где и - соответственно нижние границы интервалов, в которые входят 1 и 9 децили;

i - величины интервалов, в которые входят 1 и 9 децили;

И - соответственно частоты интервалов, в которые входят 1 и 9 децили;

Накопленная частота интервала, предшествующая децильному (в первой формуле для 1-й децили, во второй формуле для 2-й децили).

Таблица 10. Распределение населения района

По среднедушевому доходу

Месячный среднедушевой доход, тыс.руб Численность Накопленные частоты
тыс.чел. в % к итогу
20-40 - 40-60 60-100 100-150 150-200 - 200-300 300-500 500 и выше 9,2 25,2 32,9 30,0 27,4 15,5 4,9 3,1 6,2 17,0 22,2 20,2 18,5 10,5 3,3 2,1 9,2 () 34,4 () 67,3 97,3 124,7 () 140,2 () 145,1 148,2
Итого 148,2 -

Среди множества варьирующих признаков существуют признаки, которыми обладают одни единицы совокупности и не обладают другие. Эти признаки называются альтернативными. Например, ученая степень у преподавателя вуза. Вариация альтернативного признака качественно проявляется в значении нуля у единиц, которые этим признаком не обладают или в значении единицы у тех, которые данный признак имеют.
Пусть n – число единиц совокупности; m – число единиц совокупности, обладающих данным признаком; p – доля единиц, обладающих данным признаком (p=m/n); q - доля единиц, не обладающих данным признаком, причем p+q =1.
Альтернативный признак принимает всего два значения – 0 и 1 с весами соответственно q и p. Вычислим среднее значение альтернативного признака по формуле средней арифметической:
.
Дисперсия альтернативного признака определяется по формуле:
,
где R – среднеквадратическое отклонение альтернативного признака.
Вычислим дисперсию альтернативного признака по следующим данным: налоговой инспекций одного из районов города проверено 86 коммерческих киосков и в 37 обнаружены финансовые нарушения. Тогда
Следовательно, дисперсия и среднее квадратическое отклонение доли коммерческих киосков, имеющих финансовые нарушения, во всей совокупности обследованных киосков равны:

Обобщенной характеристикой различий внутри ряда может служить энтропия распределения. Применительно к статистике энтропия – это мера неопределенности данных наблюдения, которая может иметь различные результаты.

Показатель энтропии (Hx):
,
где p i – вероятность события x i .

Расчет энтропии распределения можно показать на примере выпуска продукции различных сортов на одном из предприятий точного машиностроения (табл. 5.4).
Таблица 5.4 - Вероятности различных сортов продукции

Среди множества варьирующих признаков, изучаемых статистикой, существуют признаки, которыми обладают одни единицы совокупности и не обладают другие. Эти признаки называются альтернативными . Примером таких признаков являются наличие бракованной продукции, ученая степень преподавателя вуза, учеба по определенной специальности и т. д.

Предположим, что вся статистическая совокупность имеет n единиц. Из нихm единиц обладают выделенным признаком, тогда оставшиесяn m единиц не обладают этим признаком.

Долю единиц, обладающих признаком, обозначим: , тогда пусть
доля единиц, не обладающих данным признаком.

р + q = 1

Единицам х, обладающим данным признаком, присвоим значениех = 1, а не обладающим –х = 0.

Среднее значение альтернативного признака :

=р.

То есть среднее значение альтернативного признака равно доле единиц, обладающих данным признаком.

Дисперсия альтернативного признака :

То есть дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, на долю единиц, не обладающих данным признаком.

Пример: 5% изготовленных изделий – брак, тогда 95% изделий годных. Дисперсия доли брака равна: σ 2 = 0,050,95 = 0,0475, а среднее квадратическое отклонение доли брака составляет σ =
или 22%.

Предельное значение дисперсии альтернативного признака равно 0,25; оно получается при р =q = 0,5.

3. Дисперсионный анализ

Вариация признака обусловлена различными факторами, некоторые из этих факторов можно выделить, если статистическую совокупность разбить на группы по какому-либо признаку. Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучить вариацию для каждой из составляющих ее группы, а также и между этими группами. В простейшем случае, когда совокупность расчленена на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий:общей , межгрупповой и внутригрупповой .

Общая дисперсия σ 2 общ измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значений признака х от общей по совокупности средней и может быть вычислена по формуле простой или взвешен ной дисперсии.

Межгрупповая дисперсия σ 2 межгр характеризует систематическую вариацию результативного признака, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних от общей средней:

σ 2 межгр =
,

где f - численность единиц в группе.

Внутригрупповая (частная) дисперсия σ 2 i отражает случайную вариацию, т. е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы (групповой средней) и может быть исчислена по формуле простой или взвешенной дисперсии :

σ 2 i =
(простая формула);

σ 2 i =
(взвешенная).

На основании внутригрупповой дисперсии по каждой группе (σ 2 i ) можно определить общую средн юю из внутригрупповых дисперсий :

=
.

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:

σ 2 общ = σ 2 межгр + .

Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью - неизвестную, а также судить о силе влияния группировочного признака.

Чем больше доля межгрупповой дисперсии в общей дисперсии, тем сильнее влияние группировочного признака на изучаемый признак.

В статистическом анализе широко используется эмпирический коэффициент детерминации (η 2) - показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии результативного признака и характеризующий силу влияния группировочного признака на образование общей вариации:

η 2 =
.

Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х (остальная часть общей вариации у обусловливается вариацией прочих факторов). При отсутствии связи эмпирический коэффициент детерминации η 2 равен нулю, а при функциональной связи - единице. Если, например η 2 = 0,666, это значит, что на 66,6% вариация исследуемого показателя обусловлена различиями в значениях признака-фактора, положенного в основание группировки, и на 33,4% - влиянием прочих факторов.

Эмпирическое корреляционное отношение - это корень квадратный из эмпирического коэффициента детерминации:

η =
.

Оно показывает тесноту связи между группировочным и результативным признаками.

Эмпирическое корреляционное отношение η, как и η 2 , может принимать значения от 0 до 1.

Если связь отсутствует, то корреляционное отношение η = 0, т. е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный признак никак не влияет на образование общей вариации.

Если связь функциональная, то корреляционное отношение η = 1. В этом случае межгрупповая дисперсия равна общей дисперсии (σ 2 межгр = σ 2), т. е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком определяет вариацию изучаемого результативного признака.

Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.


где q- доля единиц, не обладающих признаком p- доля единиц, обладающих признаком

p + q = 1

Среднее значение альтернативного признака


Дисперсия альтернативного признака:

Максимальное значение дисперсии альтернативного признака 0,25

Правило сложения дисперсий

Выделяют дисперсии:

2) групповую

3) межгрупповую

4) среднюю из групповых

Величина общей дисперсии характеризует вариацию признака под воздействием всех факторов, вызывающих эту вариацию:


где - среднее значение изучаемого признака для i – й группы

– общая средняя для всей совокупности

Номер группы

– количество единиц в i – й группе

Средняя из групповых (или остаточная) дисперсия характеризует случайную вариацию, т. е. ту часть вариации, которая вызвана действием других неучтённых факторов, и не зависящую от фактора, положенного в основании группировки:


где - групповая дисперсия


Общая дисперсия равна сумме межгрупповой и средней из групповых дисперсий:

Эмпирический коэффициент детерминации:

Эмпирический коэффициент детерминации показывает долю межгрупповой дисперсии в общей дисперсии (насколько общая вариация изучаемого признака обусловлена вариацией группировочного (факторного) признака), т.е. показывает, насколько вариация признака в совокупности обусловлена фактором группировки.

Эмпирическое корреляционное отношение:

Эмпирическое корреляционное отношение характеризует степень влияния группировочного признака на результативный показатель и оценивает тесноту связи между изучаемым и группировочным признаками. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1. Чем ближе η к 1, тем степень влияния больше, чем ближе к 0, тем слабее.

Стоимость 1 кв.м общей площади (у.е.) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

Таблица 14

При этом известно, что первые пять домов были построены вблизи делового центра, а остальные - на значительном расстоянии от него.

Для расчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади:

Общую дисперсию определим по формуле :

Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

а) для домов, построенных вблизи центра:

б) для домов, построенных далеко от центра:

Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии :

Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных не учитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

ПОКАЗАТЕЛИ ВАРИАЦИИ

Методические указания к решению задач

По теме «Показатели вариации»

Для измерения степени варьирования (колеблемости) признака служит вариация, показателями которой являются: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, средний квадрат отклонений (дисперсия), коэффициент вариации.

Размах вариации

Размах вариации (R ) характеризует пределы вариации (изменения) индивидуальных значений (или вариантов) признака (x ) в статистической совокупности

где - наибольшее и наименьшее значение признака.

Среднее линейное отклонение

Среднее линейное отклонение вычисляется по формулам средней арифметической:

Простой (невзвешенной)

,

где - i -е значение признака x ;

Средняя величина признака x ;

Статистический вес i -го значения признака;

n - число членов совокупности;

Взвешенной

Среднее квадратическое отклонение

Среднее квадратическое отклонение рассчитывается по формулам:

Невзвешенной

Взвешенной

Дисперсия количественного признака

Дисперсия количественного признака определяется по формулам средней арифметической:

Невзвешенной

Взвешенной

Дисперсия может быть рассчитана следующим образом:

где - средний квадрат значений признака;

Квадрат средней величины признака.

Свойства дисперсии количественного признака

1. При уменьшении или увеличении весов (частот) варьирующего признака в K раз дисперсия не изменяется

2. При уменьшении или увеличении каждого значения признака на одну и ту же постоянную величину А дисперсия не изменяется

где - среднее значение признака (x - A ).

3. При уменьшении или увеличении каждого значения признака в одинаковое число K раз дисперсия уменьшается или увеличивается в K 2 раз, а среднее квадратическое отклонение - в K раз



где - среднее значение признака xK .

4. Дисперсия признака относительно произвольной величины A всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной

Доказательство:

Дисперсия относительно средней величины

Вычисление дисперсии способом моментов

Метод упрощенного расчета дисперсии осуществляется по формуле

и называется способом моментов.

Показатели m 1 , m 2 представляют собой моменты первого и второго порядка и рассчитываются следующим образом

Доказательство:

Дисперсии количественного признака в совокупности,

Разделенной на группы

Для анализа связей количественных признаков в статистической совокупности, разделенной на группы, рассчитываются следующие дисперсии: групповая, межгрупповая, внутригрупповая и общая.

Групповая дисперсия (частная) характеризует вариацию признака в группе, обусловленную действием на него всех прочих факторов, кроме признака, положенного в основание группировки (группировочного признака):

где - i -е значение признака в j -й группе;

Частная (групповая) средняя величина признака в j -й группе;

Статистический вес i -го значения признака в j -й группе;

Число различных значений признака в j -й группе.

Межгрупповая дисперсия измеряет степень колеблемости (вариацию) признака во всей статистической совокупности за счет фактора, положенного в основание группировки (группировочного признака):

где - среднее значение признака в совокупности (общая средняя);

Вес j -й группы, представляющий собой численность единиц в j

J - количество групп в статистической совокупности.

Внутригрупповая дисперсия (средняя групповых дисперсий) измеряет степень колеблемости признака во всей совокупности в целом за счет действия на него всех прочих факторов (признаков), кроме группировочного признака:

Общая дисперсия измеряет степень колеблемости признака, за счет влияния всех действующих на него факторов:

Общая дисперсия признака в статистической совокупности, разделенной на группы, может быть определена по основной формуле дисперсии

Межгрупповая и общая дисперсии применяются для определения показателей тесноты связи показателей в совокупности, разделенной на группы.

Дисперсия качественного альтернативного признака

Для определения дисперсии альтернативного признака допустим, что общее число единиц совокупности равно n . Число единиц, обладающих изучаемым признаком - f , тогда число единиц, не обладающих изучаемым признаком, равно (n - f ) . Ряд распределения качественного (альтернативного) признака имеет следующий вид

Значение переменной Частота повторений
f n -f
Итого n

Средняя арифметическая такого ряда равна:

то есть равна относительной частоте (частости) появления изучаемого признака, которую можно обозначить через p , тогда

Доля единиц, обладающих изучаемым признаком равна p , доля единиц, не обладающих изучаемым признаком, равна q , тогда p + q = 1.

Понравилась статья? Поделитесь с друзьями!