Фосфорно-кальциевый обмен: норма, нехватка, причины, проведение анализов, симптомы, лечение и восстановление баланса. Физиология нарушения фосфорно - кальциевого обмена Механизмы регуляции фосфорно кальциевого обмена

Кальций - один из важнейших минеральных элементов организ­ма. Он участвует в формировании скелета и тканей зуба, необходим для свёртывания крови, мышечного сокращения, генерации электри­ческих потенциалов, участвует в регуляции проницаемости и возбу­димости клеточных мембран, в механизмах выделения медиаторов и гормонов клетками, активирует многие ферменты, имеет значение для роста и размножения клеток. Кальций выполняет роль вторичного посредника в действии многих гормонов и медиаторов на клетки и осуществляет регуляцию внутриклеточных процессов. Постоянный уровень кальция в крови особенно важен для функции возбудимых структур. Даже небольшое его снижение в крови повышает возбуди­мость нервно-мышечной системы и приводит к тоническим сокраще­ниям скелетной мускулатуры.

В организме содержится 2 кг кальция, 99% которого находится в костях в составе гидроксиапатита [Са 10 (Р0 4) 6 (ОН) 2 ] , кристаллы кото­рого заключены в органический матрикс.

Минеральный компонент кости находится в состоянии постоянного обновления благодаря деятельности остеобластов и остеокластов. При этом большая часть кальция находится в состоянии медленного обмена и только 0,4% в состоянии более быстрого обмена с кальцием внеклеточной жидкости, со скоростью 2 г/сут. Показано, что введе­ние радиоактивного кальция в кровь вызывает его появление в зубах уже через 2 часа. Среди многих констант внутренней среды организ­ма концентрация кальция является одной из самых строгих. Уровень кальция в плазме крови колеблется в очень узких пределах 2,2-2,5 ммоль/л. Около 40% кальция сыворотки крови связано с белками, главным образом с альбумином, 50% находится в ионизированном состоянии, и 10% - это кальций, связанный в составе низкомолеку­лярных комплексов (с цитратами, фосфатами и бикарбонатами).

В клетках концентрация кальция очень низка - 10 -7 мМ/л, это в 1000 раз меньше, чем во внеклеточной жидкости. Такое состояние достигается благодаря действию кальциевой АТФ-азы, которая отка­чивает кальций из клетки в обмен на ион Н + и благодаря кальций-натриевому обмену. Большая часть внутриклеточного кальция содер­жится в митохондриях и цитоплазматическом ретикулуме.



В организм кальций поступает главным образом с молочными продуктами. Рекомендуемая норма -1000 мг в сутки. До 700 мг катио­на всасывается в кишечнике, до 200 мг выделяется с мочой, до 100 мг с потом. Некоторое его количество выделяется с калом.

У человека главным местом всасывания кальция является тонкий кишечник, особенно эффективно процесс протекает в 12-перстной и в начальном отделе тонкой кишки. Из просвета кишки кальций поступа­ет в энтероцит через кальциевые каналы по электрохимическому градиенту. На базолатеральной мембране клетки находится кальций-активируемая АТФ-аза, которая транспортирует кальций против электрохимического градиента за пределы клетки. Через межклеточное пространство кальций достигает кровеносных капилляров и поступает в кровь. Одновременно со всасыванием катиона происходит его сек­реция слюнными, желудочными железами, поджелудочной железой, печенью и железами кишки в просвет кишечника. Часть кальция опять подвергается всасыванию, часть выводится с калом.

Фосфор. В организме фосфор находится в двух состояниях: в виде органических фосфоросодержащих соединений и неорганиче­ских фосфатов плазмы, представленных свободными анионами фосфорной кислоты (НРО 4 2- Н 2 РО 4 -) и её солями: фосфорнокислым натрием, калием, кальцием. В плазме крови в норме содержится 0,9-1,5 ммоль/л неорганического фосфата. Анионы фосфорной кислоты НРО 4 2- и Н 2 РО 4 - в соотношении 4:1 являются существенной частью буферной системы крови. В пищеварительном тракте фосфор вса­сывается в виде неорганического фосфат-аниона. Основная часть фосфорнокислых солей откладывается в костях в виде Са 3 (РО 4) 2 и образующегося в процессе минерализации костей гидроксиапатита. Между неорганическим фосфатом костей и крови существует посто­янный обмен. За сутки обменивается около 10-20% фосфата костной ткани.

Обмен фосфат-аниона тесно связан с обменом кальция. Посто­янство концентрации кальция и фосфата в крови и внеклеточной жидкости является результатом динамического равновесия между притоком ионов в кровь (всасывание в кишечнике, реабсорбция в почках, мобилизация из кости) и удалением их из крови (экскреция с мочой, секреция в кишечнике, отложение в кость).

Регуляция этих процессов осуществляется системой, включающей 3 гормона: паратиреоидный гормон (ПТГ), кальцитонин и кальцитриол, образующийся в почках из витамина Д 3 .

Первый из названных гормонов – паратиреоидный гормон , он же паратирин или паратгормон.Секреция этого гормона паращитовидными железами зависит от концентрации кальция в кро­ви, поступающей к железам. Если содержание кальция снижается, то железы реагируют усиленным выделением паратгормона. При вве­дении паратгормона в кровь экспериментальных животных уже через несколько минут повышалось содержание кальция в крови.

Механизм действия гормона тесно связан с функцией почек и ме­таболизмом кальция и фосфора в костной ткани. Действие гормона на кость реализуется через остеокласты, разрушающие кость. Увели­чивается активность этих клеток, секреция ими фермента коллагеназы, под действием которой происходит разрушение органи­ческой основы кости. Возрастает активность гиалуронидазы, вызы­вающей разрушение гликозаминогликанов основного вещества.

Паратгормон влияет также на цикл трикарбоновых кислот, способ­ствуя накоплению лимонной, молочной и угольной кислот в костной ткани, которые вызывают разрушение минерального компонента кос­ти. Указанные процессы ведут к резорбции кости и поступлению освобождающихся ионов кальция и фосфатов в кровь.

ПТГ действует и на остеобласты. Он ускоряет их жизненный цикл, клетки быстрее погибают и при этом освобождается значительное количество лизосомальных ферментов, разрушающих органический матрикс кости, что сопровождается выходом кальция и фосфатов.

ПТГ является ведущим гормоном, регулирующим выведение каль­ция и фосфатов почками. Он стимулирует реабсорбцию кальция в почечных канальцах и одновременно значительно снижает реабсорбцию фосфата. Развивающаяся фосфатурия приводит к сни­жению концентрации фосфат-анионов в крови, что в свою оче­редь способствует мобилизации неорганического фосфата из кости и переходу его в кровь. А так как в костях фосфат связан с кальцием, то его мобилизация вторично приводит к освобождению ионов кальция и увеличению его концентрации в крови. Паратгормон действует также и на кишечник, где увеличивает всасывание кальция и фосфора. Влияние его на всасывание кальция осуществляется через стимуля­цию образования в энтероцитах 1,25-(ОН) 2 -Дз.

Таким образом, рост концентрации кальция в крови, наблюдаемый при действии ПТГ, достигается за счёт увеличения его поступления из костной ткани, за счёт всасывания в кишечнике и уменьшения вы­ведения с мочой. А снижение концентрации фосфата в крови несмот­ря на усиление его всасывания в кишечнике и поступление из костной ткани происходит за счёт значительного увеличения его выведения с мочой.

При недостаточной секреции этого гормона (гипопаратиреоз ) в крови снижается уровень кальция в крови, что сопровождается тета­нией, мышечными судорогами, которые развиваются вследствие по­вышения возбудимости двигательных центров на фоне гипокальциемии. При гиперпаратиреозе происходит мобилизация кальция и фос­фора из кости, костная ткань рассасывается, уровень кальция в кро­ви повышается и кальций может откладываться в паренхиматозных органах.

Следующий гормон, участвующий в регуляции обмена кальция и фосфора - кальцитонин (КТ), вырабатывается парафолликулярными клетками щитовидной железы. В отношении кальция он яв­ляется функциональным антагонистом ПТГ. Кальцитонин вызывает снижение уровня кальция и одновременно фосфата в крови Сти­мулом для выделения кальцитонина является увеличение концентра­ции ионизированного кальция в крови. Кальцитонин угнетает вса­сывание кальция в кишечнике, одновременно подавляет желудоч­ную и панкреатическую секрецию, тем самым, снижая усвоение экзо­генного кальция.

В костной ткани гормон снижает число и активность остеокластов замедляет процесс спонтанной резорбции и мобилизации кальция, стимулируя, наоборот, образование фосфорно-кальциевых комплексов. В почке млекопитающих кальцитонин оказывает кальциуретическое и фосфатоуретическое действие за счет подавления реабсорбции обоих ионов в дистальном отделе нефрона.

Таким образом, уменьшение поступления кальция и фосфата из кишечника, костной ткани и усиленное выведение их почками приво­дит к снижению концентрации ионов в плазме крови.

Витамин Дз является важнейшим гормоном, регулирующим гомеостаз кальция и фосфора во внутренней среде организма. Необхо­димый для жизнедеятельности витамин Д 3 поступает с пищей через кишечник или образуется в коже из 7-дигидрохолестерина под дейст­вием ультрафиолетового облучения. Образовавшийся после нефер­ментативных фотохимических превращений холекальциферол с кро­вью поступает в печень, где гидроксилируется с образованием 25-гидроксихолекальциферола (25-(ОН)-Д 3), который в почках превра­щается в 1,25-дигидроксихолекальциферол - 1,25-(ОН) 2 -Д 3 и 24,25-дигидроксихолекальциферол - 24,25-(ОН) 2 -Дз. Первый является наи­более активной гормональной формой витамина Д 3 и называется кальцитриолом.

Основная физиологическая роль витамина Д 3 состоит в регуляции обмена кальция и фосфатов также за счет влияния на их содержание в костной ткани, всасывание в кишечнике и выделение почками. Дей­ствие кальцитриола на клетки-мишени заключается в индукции синте­за кальций связывающего белка (КСБ) - кальбайдина, который участ­вует во внутриклеточном транспорте кальция. В энтероцитах ки­шечника кальцитриол стимулирует всасывание кальция и кон­тролирует все процессы, связанные с перемещением катиона через клетки.

Прежде всего, 1,25-(ОН) 2 -Д 3 значительно увеличивает проницае­мость щеточной каймы, влияя на липидные компоненты и увеличивая «текучесть» мембраны. В результат облегчается вход кальция в клетку по электрохимическому градиенту. Далее, стимулируя в энте­роцитах синтез КСБ, гормон увеличивает количество кальция, доставляемое в базальную часть клетки, где на базолатеральной мем­бране он же стимулирует активность Са АТФ-азы, откачивающей ка­тион из клетки против электрохимического градиента. Кальцитриол также увеличивает всасывание фосфатов в кишечнике. В почках витамин Д 3 увеличивает реабсорбцию кальция и фосфата, способствуя их возвращению в кровь. Таким образом под влиянием витамина Д 3 уровень кальция и фосфатов в крови повышается.

Хорошо известно антирахитическое действие витамина Д 3 . Гормон влияет на процессы минерализации костной ткани прежде всего за счёт увеличения содержания кальция и фосфатов в крови. Кроме того, гормон оказывает прямое действие на процессы отложения Са и Р в кости путём стимуляции образования КСБ хондроцитами.

Действие витамина Д 3 на кость зависит от уровня кальция в крови. При достаточном количестве иона кальцитриол оказывает анаболи­ческое действие на кость, особенно у растущих организмов, уси­ливая синтез остеобластами органического матрикса и способствуя отложению фосфорно-кальциевых соединений. Иная картина наблю­дается при гипокальциемии. В этом случае 1,25-(ОН) 2 -Дз стимулирует всасывание кальция в кишечнике, но тормозит функциональную ак­тивность остеобластов и образование кости на тот период, пока каль­ций в крови не восстановится до нормального уровня за счёт всасы­вания его в кишечнике. Кроме того, показано, что кальцитриол в низ­ких и высоких концентрациях оказывает противоположное действие на кость. Антирахитическое действие он оказывает в низких концен­трациях, а в высоких - подавляет синтез коллагена, тормозит мине­рализацию кости и способствует её резорбции. Поддержание гомеостаза кальция и фосфата в крови осуществляется при тесном взаи­модействии между витамином Д 3 и гормоном паратиреоидином. Ви­тамин Д 3 , усиливая всасывание кальция и фосфатов в кишечнике, приводит к повышению концентрации ионов в крови. На это измене­ние состава крови паращитовидные железы реагируют снижением секреции паратгормона, что приводит к снижению выведения фосфа­тов с мочой, в результате в организме будет достаточно и кальция и фосфатов для роста и обновления костной ткани. При гиповитамино­зе Д количество кальция и фосфатов в крови оказывается недостаточ­ным для кальцификации костей, что служит причиной развития рахи­та у детей. Однако концентрация кальция в крови в этих условиях поддерживается почти на нормальном уровне за счёт костной ткани, т.к. в ответ на гипокальциемию возрастает секреция паратгормона и стимулируется процесс деминерализации костной ткани.

Схема действия паратиреоидного гормона (ПТГ), Bit D 3 и кальцитонина (КТ), регулирующих уровень кальция и фосфатов в крови.

Дентин - это та же кость. Он продуцируется одонтобластами, ти­пичными секреторными клетками, аналогичными остеобластам. Одонтобласт секретирует органический компонент межклеточного вещества дентинный матрикс, включающий коллаген, а также протеогликаны и гликозаминогликаны. Затем происходит пропитывание матрикса солями кальция с образованием кристаллов гидроксиапатита. Гормональные регуляторы (витамин Д 3 , ПТГ и кальцитонин) ока­зывают такое же влияние на обмен кальция в дентине, как и в костной ткани.

При гипофункции паращитовидных желез и гиповитаминозе витамина Д в детском возрасте нарушается образование эмали и дентина, при гиперфункции отмечаются изменения в пародонте. Снижение секреции кальцитонина сопровождается развитием множественного карие­са.

ВЛИЯНИЕ ЭНДОКРИННЫХ ЖЕЛЕЗ__НА МОРФОФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ОРГАНОВ И ТКАНЕЙ ЧЕЛЮСТНО-ЛИЦЕВОЙ ОБЛАСТИ.

Железы внутренней секреции влияют на закладку, дифференцировку и развитие органов и тканей полости рта у эмбриона, плода и ребёнка в первые годы жизни.

В эмбриогенезе корковое вещество надпочечников и щитовидная железа начинают функционировать раньше других желёз (8 и 12 неделя соответственно). Гормоны этих желёз стимулируют рост и дифференцировку тканей и органов всего организма плода, в том числе и органов челюстно-лицевой области. Начиная с 6-7 недели эмбрио­нального периода, образуется твёрдое и мягкое нёбо и происходит разделение первичной ротовой полости на полость рта и носа, раз­витие преддверия полости рта и языка. В этот же период начинает формироваться зубная пластинка и происходит закладка и образова­ние зачатков молочных зубов. Становление функции щитовидной железы у человека совпадает с периодом дифференцировки зачат­ков молочных зубов, т.к. на 10 неделе эмбрионального развития об­разуются амелобласты, на 12 - одонтобласты, на 16 - начинается период дентино- и амелогенеза, и на 17 неделе внутриутробной жиз­ни начинают развиваться постоянные зубы.

Развивающийся зубной зачаток и пародонт очень чувствительны ко всем нарушениям гормонального гомеостаза.

При недостаточной функции щитовидной железы у матери бу­дет наблюдаться недоразвитие всех элементов тканей зубов у пло­да (системная гипоплазия) и нарушение сроков их прорезывания у ребёнка. Нарушение формирования твердого нёба - его расщепле­ние (палатолалия), аномалия строения языка (глосолалия). При ги­потиреозе у ребенка отмечается нарушение прорезывания зубов и аномалия развития эмали, а также значительное увеличение губ и языка, приводящее к затруднению речи и акта глотания. Слизистая оболочка отёчная, дёсны бледные, набухшие. При гипертиреозе отмечается в основном ускоренное прорезывание зубов.

При угнетении функции щитовидной железы или её полном удалении у взрослого человека нарушается фосфорно-кальциевый обмен и развивается множественный кариес в области шеек зубов. Наблюдается также атрофия поднижнечелюстных желёз. При гипертиреозе у взрослого также возможен множественный кариес, кроме того, отмечается набухание десен.

При недостаточности функции коркового вещества надпочеч­ников (болезнь Аддисона) отмечается пигментация слизистой обо­лочки щёк, губ и края языка. Это происходит вследствие отложения меланина в соединительной ткани и в базальных эпителиальных клетках под влиянием меланотропного гормона гипофиза, секреция которого увеличивается по механизму отрицательной обратной связи между надпочечником и гипофизом вследствие снижения в крови уровня кортикостероидных гормонов.

При гипокортицизме нарушается способность различать оттенки вкусовых и обонятельных ощущений, которая восстанавливается при введении гормонов. При гиперфункции коры надпочечников проявля­ется катаболическое действие кортикостероидных гормонов - на­блюдается рассасывание костной ткани (остеопороз).

Увеличение секреции соматотропного гормона приводит к чрезмерному разрастанию костей и мягких ткней лица, черепа, конеч­ностей- акромегалия. Увеличиваются размеры губ (макрохейлия), языка (макроглоссия), наблюдается гиперплазия дёсен, расширение межзубных промежутков, увеличение зубной дуги.

При недостаточной секреции инсулина поджелудочной желе­зой (диабет) отмечается сухость слизистой полости рта вследствие дегидратации тканей, изменения мелких сосудов, гиперемия слизи­стой, кровоточивость, нарастающая подвижность зубов, отложения зубного камня.

В главе 8 уже рассматривалась роль паратирина и кальцитонина в поддержании уровня кальция и фосфора в крови. Необходимо добавить, что при пониженной секреции паращитовидных желёз в детском возрасте наблюдается гипоплазия эмали и наруше­ние образования дентина, у взрослого уменьшается проницаемость эмали. При гиперсекреции изменения развиваются, главным образом, в пародонте. При увеличении секреции гормона щитовидных желёз тиреокальцитонина, а также при увеличении секреции околоушными железами паротина наблюдается увеличение проницаемости эмали.

Таким образом, нарушения функции эндокринных желёз у ребёнка и у взрослого приводят к различным отклонениям в формировании и развитии зубов: к задержке рассасывания молочных зубов, наруше­нию сроков и порядка прорезывания зубов, изменениям структуры дентина и цемента, некариозному поражению твердых тканей зубов (гипоплазии, патологическому стиранию, некрозу, эрозии).

Нарушения фосфорно-кальциевого обмена, развивающиеся в ре­зультате ХБП, классифицируются KDIGO как костно-минеральные нарушения - mineral bone disorder CKD-MBD (рис. 1.15).

Системное нарушение костно-минерального метаболизма, обусловленное ХБП и манифестирующее одним из следующих признаков или их комбинацией:

Отклонения в метаболизме кальция, фосфора, паратиреоидного гормона или витамина D;

Нарушения обмена кости, минерализации, объема, линейного роста или ее прочности;

Сосудистая или тканевая кальцификация

KDIGO is the registered mark of the Kidney disease: Improving Global Outcomes.

Мое S. et al. Kidney Int. - 2006. - 69. -1945-1953.

Рисунок 1.15. Определение KDIGO: костно-минеральные нарушения ХБП (mineral bone disorder CKD-MBD)

Нарушения фосфорно-кальциевого обмена являются одной из основных составляющих прогрессирующего поражения почек, фор­мируя два основных ведущих синдрома: резорбцию костной ткани и эктопическую кальцификацию. Наиболее неблагоприятной явля­ется кальцификация сердечно-сосудистой системы, клиническая значимость которой состоит в фатальном повышении рисков кар­диоваскулярной смертности (рис. 1.16).

Костно-минеральные нарушения ХБП несут в себе независи­мые факторы риска сердечно-сосудистой смертности: гиперфосфа- темию, гиперкальциемию, повышение паратиреоидного гормона.

Началом развития костно-минеральных нарушений является снижение способности почек к экскреции фосфатов на фоне прак­тического неизменного их всасывания в кишечнике. Снижение


Рисунок 1.16. Вклад относительного риска из-за нарушений минерального обмена в смертность является высоким

СКФ (По мере прогрессирования почечной недостаточности развива­ется резистентность канальцевого аппарата почек к действию ПТГ. Для усиления экскреции фосфора организмом начинает более актив­но использоваться витамин D, увеличивающий выведение фосфатов, но, помимо этого, стимулирующий всасывание кальция (и в меньшей мере фосфора) в кишечнике и реабсорбцию кальция в почках. Напом­ним, что витамин D 2 (эргокальциферол) поступает с пищей, витамин D 3 (холекалыдаферол) образуется в коже под воздействием ультрафи­олетовых лучей. Витамины D 2 и D 3 подвергаются первому гидрокси- лированию в печени, где в последующем и сохраняются его основные

запасы. При этом Э 3 пре­вращается в 25-гидрокси- холекальциферол (25-ОН-

О э) - кальцидиол, а0 2 -в 25-гидроксиэргокальцифе- рол (25-0Н-0 2). Это превра­щение катализирует фермент 25-гидроксилаза.

25-гидрок- сикальциферолы-основная транспортная форма витами­на О в организме. В плазме крови они (как и другие фор­мы витамина) переносятся специфическим транспорт­ным белком - транскаль- циферином. Второе гидрок- силирование происходит в почках, где из 25-ОН-О э с помощью 1-а-гидроксилазы образуется биологически ак­тивный витамин 0 3 (1,25-ди- гидроксихолекал ьциферол, или кальцитриол), а посред­ством 24-гидроксил азы -

24,25- (ОН) 2 -О э. Аналогично из 25-ОН-О г образуются 1,25-(ОН) 2 -П 2 и 24,25-(0Н) 2 -О 2 . Наиболее активная форма 0 3 , ответственная за его функции, - 1,25-(ОН) 2 -О г Его биологическое действие в 10 раз пре­вышает активность других форм, поэтому говоря о дефиците витамина Б при ХБП, прежде всего имеют в вицу недостаточный синтез активного мета­болита витамина Б 3 .

Важнейшие регуляторы, активирующиесинтез 1,25-(0Н) 2 -0 3 ,-па- ратиреоидный гормон, эстрогены, пролактин, соматотропин и инсулин. Увеличение концентрации фосфора усиливает секрецию паратире- оидного гормона, который активирует в почках 1-а-гидроксилазу, в результате чего ускоряется синтез 1,25-(0Н) 2 -О 3 (рис. 1.18). Избы­точное поступление Са 2+ и Рс пищей подавляетсинтез 1,25-(ОН) 2 -Б 3 , так как при этом его предшественник 25-(0Н)-0 3 превращается в
почкахв24,25-(ОН) 2 -0 3 , который стимулирует всасывание кальция и фосфора в кишечнике так же эффективно, как

1,25- (0Н) 2 -0 3 , и одно­временно стимулирует остеогенез и минерали­зацию костной ткани.

У пациентов с ХБП 3-4-й ст. в различные сроки развивается сна­чала функциональный, а затем абсолютный дефицит витамина 0 3 (кальцидиола и затем кальцитриола) за счет уменьшения массы функционирующей паренхимы, продуцирую­щей 1-а-гидроксилазу. Основное патоморфологическое следствие развивающейся недостаточности витамина Э - нарушение минера­лизации костной ткани. Биологическая активность витамина Б из­меряется в международных (интернациональных) единицах (МЕ); 1 МЕ соответствует активности 0,025 мкг эрго- или холекальциферо- ла. Содержание Э 2 и Э 3 в продуктах питания невелико. Например, в печени быка и сливочном масле соответственно 0,4 и 0,4-3,2 МЕ/г. Исключение составляют жир печени трески и тунца, в которых этих витаминов содержится соответственно 50-350 и 40 000-60 000 МЕ/мл. Потребность человека в витамине Б, составляющая 400 МЕ (10 мкг) в сутки, при достаточной и регулярной инсоляции обеспечивается фотохимическим синтезом Б 3 в коже или за счет поступления с пи­щей. Однако за счет пищевого рациона и воздействия ультрафиоле­товых лучей компенсировать недостаток витамина у пациентов с ХБП невозможно. Поэтому в качестве лечебной опции пациентам с ХБП 3-4-й ст. (КЕЮ01, 2003) рекомендуют целевое сывороточное содер­жание гидроксихолекальциферола (25-(0Н)-0), то есть кальцидиола (неактивного витамина Б 3), в дозе >75 ммоль/л, как и для всего насе­ления. Его восполнение возможно за счет любых форм витамина Б.


Рисунок 1.19. Содержание Р, Са, Р, ПТГ и витамина D 3 приХБП (Graver I. eta/. //Nephrol. Dial. Transplant. - 2007. - 22. -1171-1176)

Таким образом, при ХБП 3-4-й ст. уровень фосфора в крови остается еще нормальным, имея тенденцию к повышению, уровень кальция остается нормальным, имея тенденцию к понижению, уро­вень ПТГ постепенно повышается, уровни витамина Э 3 и его актив­ного метаболита постепенно снижаются (рис. 1.19-1.20).

Следует отметить, что за счет взаимодействия с различными до­менами в тканях организма витамин Э 3 реализует и другие эффек­ты, не связанные напрямую с синтезом ПТГ: снижение активности РААС и протеинурии, уменьшение левожелудочковой гипертро­фии, защита от атеросклероза и опухолей.

При достижении ХБП 5-й ст. функциональный дефицит вита­мина Э переходит в органический, так как из-за резкого падения выработки 1-а-гидроксилазы практически прекращается синтез ак­тивного метаболита витамина - кальцитриола. В связи с этим для лечения ХБП 5-й ст. (КХЮС)1, 2003) не рекомендуют назначать на-

Рисунок 1.20. Зависимость уровней фосфора, кальция и ПТГ от уровня СКФ


тивный витамин О, отдавая предпо­чтение активным формам витами­нов Э 3 или 0 2 . Формирующийся дефицит витамина Э обусловливает развитие гипо- кал ьциемии. Та­ким образом, при ХБП имеют место нарастающая гиперфосфатемия, гипокальцие- мия, дефицит витамина О (особенно его активного метаболита) и все нарастающая выработка ПТГ (рис. 1.21).

Гипокальциемия при дефиците витамина О способствует не только гиперпродукции ПТГ (вторичный гиперпаратиреоз, или ги- перпаратиреоидизм), но и последующей гиперплазии паращитовид­ных желез и развитию их аденомы (рис. 1.22). Эта гиперплазирован­ная ткань уже малочувствительна к регулирующему влиянию кальция



Рисунок 1.22. Развитие гиперплазии паращитовидных желез

и витамина О. Считается, что количество кальциевых рецепторов в узлах паращитовидной железы уменьшается почти на 60 %.

Кальций и витамин 0 3 практически независимо друг от друга регулируют выработку ПТГ через различные рецепто­ры: кальцийраспознающий рецептор (КР) и трансмембранный витамин-О э -рецептор (ВР). КР является поверхностным мем­бранным рецептором, находящимся в неактивном состоянии при низком содержании внеклеточного кальция, что определя­ет постоянный синтез ПТГ и является сигналом для увеличения количества КР. При повышении содержания кальция активи­руется КР, что быстро вызывает снижение количества ПТГ за счет угнетения его синтеза и секреции. Одновременно умень­шается экспрессия КР. Однако, если низкое содержание каль­ция сохраняется во внеклеточной жидкости более нескольких минут, активизируются механизмы транскрипции и начинается пролиферация паратиреоидных клеток. Витамин действует зна­чительно медленнее, так как для реализации эффекта ему не­обходимо проникнуть внутрь клетки паращитовидной железы, связаться с ядерным рецептором и только затем вызвать эффект подавления генной транскрипции, приводящей к снижению

Рисунок 1.23

синтеза ПТГ. Таким образом, этиологическими факторами вто­ричного гиперпаратиреоза являются последовательно развивающиеся гиперфосфатемия, затем дефицит активного витамина Д 3 и гипокаль- циемия.

Весь каскад нарушений фосфорно-кальциевого обмена, как было отмечено выше, формирует два жизненно неблагоприятных синдрома: эктопической кальцификации мягких тканей и сосудов и болезни костей (рис. 1.23).

Фосфор влияет на процессы прямой и непрямой кальцифи­кации. Прямая кальцификация происходит за счет Са х Р продук­та, а именно: повышенный внутриклеточный кальций образует ядро апатитного депозита в соединении с фосфором. Непрямая кальцификация происходит посредством развития гиперпарати- реоидизма: длительное увеличение уровня фосфора напрямую стимулирует синтез ПТГ и ведет к гиперплазии паратиреоидных желез, а ПТГ увеличивает базальный уровень внутриклеточного кальция.

Кальцификация фосфатами кальция начинается с интимы сосудов и в последующем захватывает мышечный слой, форми­руя жесткость сосудов (рис. 1.24). Кальцификация, происходя­щая в результате нарушений фосфорно-кальциевого обмена, несколько отличается от поражения сосудов при кардиоваску­лярных заболеваниях. Однако при ХБП имеют место оба типа нарушений.

При ХБП имеют место оба процесса



Рисунок 1.24. Кальцификация артерий: различные точки приложения при сердечно-сосудистых заболеваниях и нарушении фосфорно-кальциевого обмена

В сердечной мышце также образуются очаги эктопических каль- цификатов, что снижает нагнетательную способность миокарда. Процесс формирования эктопических кальцификатов стимулиру­ется появлением остеобластподобных клеток, депозицией кристал­лов фосфата кальция, увеличением FGF 23, фетуина А, матричных протеинов Gla и рядом других сигнальных молекул. Клиническими следствиями эктопической кальцификации сердечно-сосудистой системы являются развитие аритмий (внезапная смерть), сердеч­ной недостаточности и повышение смертности от всех кардиова­скулярных событий (рис. 1.25). При этом следует помнить, что по­чечнозаместительная терапия не позволяет полностью исключить негативного влияния ограниченной функции почек на сердечно­сосудистую смертность.

Среди других проявлений эктопической кальцификации наи­более часто документируют поражение легких, кожи и околосустав­ного аппарата (табл. 1.16).


% Интимасклероз,

медиасклероз и атерокальциноз

Рисунок 1.25



В зависимости от метаболизма костной ткани различают фиброз­ный остеит, остеомаляцию, адинамическую болезнь почек и смешан­ные нарушения (табл. 1.17). Решающей в установлении типа наруше­ний является биопсия кости с морфометрическим исследованием.

Adapted by permission from Macmillan Publishers Ltd: Kidney International. Moe S. et al. II Kidney Int. - 2006. - 69. - 1945-1953. Copyright 2006.

© 2008 Amgen. All rights reserved.

Рисунок 1.28. Классификация ренальной остеодистрофии

Руководство KDOQI (Guidelines on Bone Mineral Metabolism and Disease in CKD, 2003) рекомендует биопсию тазовой кости при сле­дующих состояниях 5-й стадии ХБП:

Переломы при минимальном воздействии или без видимой причины (патологические переломы);

ИПТГ в пределах 100-500 пг/мл при необъяснимой гипер- кальциемии или выраженной боли в костях;

Предполагаемая алюминиевая болезнь костей, диагности­рованная на основании клинических симптомов или анамнеза ис­пользования алюминия.

Информативность рентгенологической двухфотонной абсорб- циометрии (ДЕХА) у пациентов с ХБП окончательно не установ­лена и не несет специфической информации о метаболизме кости. DEXA не коррелирует с гистологией костной ткани и частотой пере­ломов. Поэтому DEXA следует рассматривать с комплексе с други­ми биомаркерами кости и минерального обмена, клинической кар­тиной и результатами гистологического исследования. В настоящее время для оценки состояния кости используется мультиспиральная томография, позволяющая получить трехмерное изображение вне

Таблица 1.17. Типы заболеваний кости, %
Тип заболевания бИеггагсІ, УасИ, вИеггагб, 1993
Гемодиализ ДАПД 1
Фиброзная остеоди­строфия (ФО) 22 68 38 9
Мягкая степень ФО 45 0 13 21
Комбинированное уре­мическое повреждение 9 0 11 4
Остеомаляция 24 25 2 6
Отсутствие динамики заболевания кости 0 7 36 61

Примечание: 1 - длительный амбулаторный перитонеальный диализ.


влияния окружающих структур и распознать как кортикальные, так и трабекулярные структуры кости.

В практике упрощенно выделяют два вида нарушений: с высо­ким (фиброзный остеит) и низким обменом (адинамические нару­шения, остеомаляция). В основе этих нарушений лежат различная регулирующая концентрация ПТГ, активность остеокластов/остео- бластов и костной щелочной фосфатазы.

Высокие уровни ПТГ стимулируют остеобласты, обеспечивая высокий уровень обмена в костной ткани и формируя фиброзно­кистозный остеит. Высокий уровень обмена в костях приводит к образованию неупорядоченного остеоида, фиброзу и образованию кист, в результате чего истончается кортикальная кость, снижает­ся прочность кости и повышается риск переломов (КГЮС)1, 2003). Этот вид костноминеральных нарушений сейчас встречается реже ввиду активной сопроводительной терапии витамином Б.

Адинамические нарушения и остеомаляция характеризуются сни­жением костного обмена или ремоделирования с уменьшенным числом остеокластов и остеобластов, а также подавлением остеобластной актив­ности. При остеомаляции наблюдается накопление неминерализован­ного костного матрикса, то есть увеличение объема остеоида, что может вызываться дефицитом витамина Э или накоплением алюминия. Ади- намическая остеодистрофия характеризуется снижением объема кости и ее минерализации и может вызываться накоплением алюминия или избыточным подавлением секреции ПТГ при помощи кальцитриола.

Адинамические нарушения кости (болезнь адинамической ко­сти, адинамическая остеодистрофия) характеризуются нарушением образования матрикса кости, минерализации кости и снижением ре­зорбции кости на фоне низкого/нормального уровня ПТГ и низкого уровня костноспецифической щелочной фосфатазы. Нередко ади­намические нарушения возникают при передозировке кальциевых фосфатных биндеров и витамина О. Однако это не является основ­ной причиной нарушений. Пациенты, страдающие адинамическими нарушениями кости, выглядят старше своего возраста, чаще болеют сопутствующими заболеваниями, имеют диабет, более выраженные атеросклеротические изменения и МИА-синдром (мальнутриция, воспаление, атеросклероз), долго лечились диализом.

Для лечения костно-минеральных нарушений ХБП и вторичного ги- перпаратиреоза используют диету, фосфатбиндеры, витамин И, а у диализных пациентов - низкокальциевые растворы (1,25 ммоль/л) при гиперкальциемии, высококальциевые (> 1,4 ммоль/л) - при гипокальциемии, а также кальцимиметики (только при почечно­заместительной терапии) при неэффективности терапии аналогами витамина О и выраженном гиперпаратиреозе.

Начальным и необходимым этапом лечения является диета с суточным содержанием фосфатов 800-1000 мг. С учетом ряда соци­альных сложностей, в особенности у лиц молодого возраста, более простым методом является использование фосфатбиндеров - пре­паратов, молекулы которых, не всасываясь из кишечника, связывают фосфор и выводят его из организма в виде нерастворимых веществ (табл. 1.18). Алюминийсодержащие фосфатбиндеры, несмотря на их хорошую эффективность, в настоящее время не используются из-за высокого риска кумуляции алюминия с последующим разви­тием энцефалопатии и поражения костей.

Современные руководства определяют целевые значения в ле­чении костно-минеральных нарушений ХБП (табл. 1.19, рис. 1.29).

В настоящее время считается нецелесообразным использование соотношения Са х Р как некорректно характеризующего минераль­ные нарушения. Однако современные рекомендации КГЮ()1 ждут своего представления в 2010 году.

Назначение активных метаболитов витамина рассмотрено в предыдущей лекции. Следует еще раз подчеркнуть, что терапев-

Таблица 1.18. Применение фосфатбиндеров
Фосфат- Состав Побочные Недостатки Достоинства
РІіозех РИови», 667 мг Кальция Усиление

кальцифика­

Доступная
Карбонат Кальция кар­бонат Гиперкаль- циемия, запо­ры, диарея Усиление

кальцифика­

Доступная
ОэуёЯеп Кальция аце­тат + магния карбонат Гиперкальци- емия, запо­ры, диарея, гипермагние- мия Меньше каль­цификация, хорошо при
ВепадеІ, 800 мг Севеламера

гидрохлорид

Нарушение пищеваре­ния, ацидоз в предиализе Высокая цена, много таблеток для приема Меньше каль­цификация, гипохолесте- ринемическое действие
Яешеїа, 800 мг Севеламера

карбонат

Контроль Высокая цена Не вызывает ацидоза в предиализе в сравнении с Яепаде!
Робгєпоі, 250, 500 мг Лантана кар­бонат Диарея Кумули­ Высокая эф­фективность, одна таблетка вдень (ком- плайенс)


тическое окно 1,25-(ОН) 2 -Б 3 достаточно узкое и лечение витамином Б связано с повышенным риском кардиоваскулярных кальцификаций, ко­торые частично могут быть связаны с гиперкальциемией, гипер- фосфатемией, увеличением активности костной щелочной фос­фатазы, остеопонтина и уменьшением секреции гладкомышечными сосудистыми клетками ПТГ-связанного пептида. Дозы 1,25-(ОН) 2 -В 3 , оптимальные для восполнения дефицита гормона, но не развития ток­сических эффектов, все еще не установлены. Ежемесячный контроль ПТГ при использовании кальцитриола позволяет подобрать правильную дозу. Однако даже при передозировке токсический эффект лечебных доз

1,25- (ОН) 2 -О э потенциально обратим. Кроме того, токсический эффект лечебных доз 1,25-(0Н) 2 -0 3 может быть уменьшен при назначении каль- цимиметиков.



Однако следует напомнить, что витамин 0 3 , реализуя свой эффект, взаимодействует с целым каскадом сигнальных молекул, а именно: сывороточным витамин-0 3 -связывающим протеином, мембранным рецептором, 25-гидроксивитамин-0 3 -24-гидкроксилазой (СУР24) и, наконец, ядерным рецептором. Современные препараты могут вы­зывать активацию рецептора витамина с помощью не только актив­ного метаболита витамина О э, но и активного метаболита витамина 0 2 (1,25-дигидроксивитамин-Ь 2), например парикальцитола (гешріаг, аЬЬоП). При прямом сравнении с кальцитриолом гиперкальциемия и гиперфасфатемия остаются одинаковыми, но сроки сохранения ги- перкальциемии несколько короче при назначении парикальцитола, что связывают с меньшей активацией КР в кишечнике. Признано це­лесообразным использование активных форм витамина О у пациен­тов, получающих диализ, и, возможно, после трансплантации почки.

Вместе с тем известно, что существует внепочечный синтез актив­ного метаболита витамина О в макрофагах, эндотелии! предстательной железе, молочной железе и головном мозге. При снижении синтеза кальцитриола в почках названные ткани усиливают свой локальный синтез, хотя он малосравним с почечным. Локальная выработка

1,25- (0Н) 2 -0 3 модулирует ряд клеточных функций для продления жиз­ни пациентов с ХБП (Ноііск М.К // АЖО. - 2005). Поэтому целесо­образность назначения обеих форм витамина, возможно, обусловлена не только заместительной функцией кальцитриола, но и обеспечением субстрата для независимых внепочечных эффектов, предупреждающих атеросклероз, гипертензию, иммунодефицит и развитие рака.



Не-Са-биндер Са-биндер

до 1500 мг Са/сутки

Добавить не-Са-биндер

Am. J. Kidney Dis. - 2003. - 42(suppl. 3). - S1-S201.________________________________

Кальцимиметики увеличивают чувствительность кальций- распознающего рецептора и уменьшают уровень кальция и ПТГ (рис. 1.30, табл. 1.20). Различают кальцимиметики I (неорганиче­ские вещества, например Mg 2+ , Gd 3+ , аминогликозиды, спермин) и II типов. Цинакальцет (mimpara 30, 60, 90 мг) - кальцимиме- тик II типа, первый широко применяемый препарат у диализных пациентов с неэффективным результатом терапии витамином D. Суточная доза - 60-180 мг в один прием. При ХБП 3-4-й ст. ци­накальцет может вызывать гипокальциемию и гиперфосфатемию. Однако продолжается накопление клинического опыта примене­ния цинакальцета у пациентов с ХБП 3-4-й ст. и у посттрансплан­тационных больных. Кальцимиметики рекомендуются для дли­тельного постоянного приема, при этом доза витамина D может быть уменьшена.

Рисунок 1.30. Действие кальцимиметиков Таблица 1.20. Кальцимиметики и аналоги витамина D
Механизм действия
Кальцимиметики Аналоги витамина Э
1. Уменьшение выделения ПТГ:

Уменьшают экзоцитоз ПТГ за счет активации СаИ\

Уменьшают экспрессию гена ПТГ.

2. Быстрое начало действия.

3. Плавающий уровень ПТГ.

4. Уменьшение плазменного Са 2+ .

5. Уменьшение плазменного Р.

6. Могут остановить гиперплазию паращитовидной железы.

1. Снижение транскрипции РТН на­прямую за счет \ЛЭР.

2. Снижение выделения ПТГ за счет экспрессии СаН и за счет кальцеми- ческого эффекта.

3. Медленное начало действия.

4. Стабильный уровень ПТГ.

5. Увеличение плазменного Са 2+ .

6. Увеличение плазменного Р.

7. Могут остановить гиперплазию паращитовидной железы.




Таким образом, суммируя данные о влиянии терапевтических средств, можно сделать заключение, что коррекция фосфорно­кальциевых нарушений требует должного искусства со стороны врача (табл. 1.21-1.22) (A.L.M. Francisco, F. Carrera).

Однако у ряда больных перечисленные мероприятия не приво­дят к нормализации/существенному уменьшению содержания ПТГ. Как правило, это обусловлено развитием гиперпластических узлов в паращитовидной железе, которые экспрессируют малое количество КР и ВР и поэтому не чувствительны к кальцию и терапии активным витамином D. В таких случаях рекомендуется визуализация паращи­товидных желез. Для обнаружения и оценки размеров ПТГ исполь­зуется УЗИ (+ цветной допплер), сцинтиграфия с Тс 99m, МРТ и КТ.



Таблица 1.22. Возможная тактика в зависимости от уровня ПТГ
Уровень ПТГ, пг/мл Контролируемый кальций и фосфор Неконтролируемый кальций и фосфор
Менее 150 Возможное уменьше­ние дозы витамина О Уменьшить дозу витамина О Назначить или изменить тип/ дозу фосфатного биндера
150-300 Продолжить прием витамина О Продолжить прием фосфатного биндера Уменьшить дозу витамина О Титровать дозу цинакальцета Назначить или изменить тип/ дозу фосфатного биндера
Более 300 Назначение цинакальцета Продолжить прием вита­мина О Титровать дозу цинакальцета Уменьшить дозу витамина 0 Назначить или изменить тип/ дозу фосфатного биндера


Если одна из желез > 1,0 см в диаметре по данным УЗИ или уровень ПТГ превышает 600-800 пг/мл, следует ожидать резистентности к терапии кальцитриолом. Увеличение в размерах более 3 желез с при­знаками узелковой гиперплазии требует рассмотрения вопроса о на­значении цинакальцета или проведения паратиреоидэкгомии опе­ративным путем или при помощи склерозирующей инъекции.

Концентрация кальция во внеклеточной жидкости в норме поддерживается на строго постоянном уровне, редко повышаясь или снижаясь на несколько процентов относительно нормальных величин, составляющих 9,4 мг/дл, что эквивалентно 2,4 ммоль кальция на литр. Такой строгий контроль очень важен в связи с основной ролью кальция во многих физиологических процессах, включая сокращение скелетных, сердечной и гладких мышц, свертывание крови, передачу нервных импульсов. Возбудимые ткани, в том числе нервная, очень чувствительны к изменениям концентрации кальция, и увеличение концентрации ионов кальция по сравнению с нормой (гипсркальциемия) вызывает нарастающее поражение нервной системы; напротив, снижение концентрации кальция (гипокальциемия) повышает возбудимость нервной системы.

Важная особенность регуляции концентрации внеклеточного кальция: только около 0,1% общего количества кальция организма присутствует во внеклеточной жидкости, около 1 % - находится внутри клеток, а остальное количество хранится в костях, поэтому кости могут рассматриваться в качестве большого хранилища кальция, выделяющего его во внеклеточное пространство, если концентрация кальция там снижается, и, напротив, забирающего избыток кальция на хранение.

Приблизительно 85% фосфатов организма хранится в костях, от 14 до 15% - в клетках, и только менее 1% присутствует во внеклеточной жидкости. Концентрация фосфатов во внеклеточной жидкости не так строго регулируется, как концентрация кальция, хотя они выполняют разнообразные важные функции, контролируя многие процессы совместно с кальцием.

Всасывание кальция и фосфатов в кишечнике и их экскреция с калом. Обычная скорость поступления кальция и фосфатов составляет приблизительно 1000 мг/сут, что соответствует количеству, извлекаемому из 1 л молока. Обычно двухвалентные катионы, такие как ионизированный кальций, плохо абсорбируются в кишечнике. Однако, как обсуждается далее, витамин D способствует всасыванию кальция в кишечнике, и почти 35% (около 350 мг/сут) потребленного кальция абсорбируется. Оставшийся в кишечнике кальций попадает в каловые массы и удаляется из организма. Дополнительно около 250 мг/сут кальция попадает в кишечник в составе пищеварительных соков и слущивающихся клеток. Таким образом, около 90% (900 мг/сут) из ежесуточного поступления кальция выводится с калом.

Гипокальциемия вызывает возбуждение нервной системы и тетанию. Если концентрация ионов кальция во внеклеточной жидкости падает ниже нормальных значений, нервная система постепенно становится все более возбудимой, т.к. это изменение приводит к повышению проницаемости для ионов натрия, облегчая генерацию потенциала действия. В случае падения концентрации ионов кальция до уровня, составляющего 50% нормы, возбудимость периферических нервных волокон становится так велика, что они начинают спонтанно разряжаться.

Гиперкальциемия понижает возбудимость нервной системы и мышечную активность. Если концентрация кальция в жидких средах организма превышает норму, возбудимость нервной системы снижается, что сопровождается замедлением рефлекторных ответов. Увеличение концентрации кальция приводит к снижению интервала QT на электрокардиограмме, снижению аппетита и запорам, возможно, вследствие снижения контрактильной активности мышечной стенки гастроинтестинального тракта.

Эти депрессивные эффекты начинают проявляться, когда уровень кальция поднимается выше 12 мг/дл, и становятся заметными, когда уровень кальция превышает 15 мг/дл.

Формирующиеся нервные импульсы достигают скелетных мышц, вызывая тетанические сокращения. Следовательно, гипокальциемия вызывает тетанию, иногда она провоцирует эпилептиформные приступы, поскольку гипокальциемия повышает возбудимость мозга.

Всасывание фосфатов в кишечнике осуществляется легко. Кроме тех количеств фосфатов, которые выводятся с калом в виде солей кальция, почти все содержащиеся в дневном рационе фосфаты всасываются из кишечника в кровь и затем экскретируются с мочой.

Экскреция кальция и фосфатов почкой. Приблизительно 10% (100 мг/сут) поступившего в организм кальция экскретируются с мочой, около 41% кальция в плазме связано с белками и поэтому не фильтруется из гломерулярных капилляров. Оставшееся количество объединяется с анионами, например с фосфатами (9%), или ионизируется (50%) и фильтруется клубочками в почечные канальцы.

В норме в канальцах почки реабсорбируется 99% отфильтрованного кальция, поэтому в сутки экскретируются с мочой почти 100 мг кальция. Приблизительно 90% кальция, содержащегося в гломерулярном фильтрате, реабсорбируется в проксимальных канальцах, петле Генле и в начале дистальных канальцев. Затем в конце дистальных канальцев и в начале собирательных протоков реабсорбируются оставшиеся 10% кальция. Реабсорбция становится высокоизбирательной и зависит от концентрации кальция в крови.

Если концентрация кальция в крови низка, реабсорбция возрастает, в итоге кальций почти не теряется с мочой. Напротив, когда концентрация кальция в крови незначительно превышает нормальные значения, экскреция кальция значительно увеличивается. Наиболее важным фактором, контролирующим реабсорбцию кальция в дистальных отделах нефрона и, следовательно, регулирующим уровень экскреции кальция, является паратгормон.

Почечная экскреция фосфатов регулируется механизмом обильного потока. Это означает, что когда концентрация фосфатов в плазме снижается ниже критического значения (около 1 ммоль/л), все фосфаты из гломеруляр-ного фильтрата реабсорбируются и перестают выводиться с мочой. Но если концентрация фосфатов превышает значение нормы, потери его с мочой прямо пропорциональны дополнительному увеличению его концентрации. Почки регулируют концентрацию фосфатов в экстрацеллюлярном пространстве, изменяя скорость экскреции фосфатов соответственно их концентрации в плазме и скорости фильтрации фосфатов в почке.

Однако, как мы увидим далее, паратгормон может существенно увеличить экскрецию фосфатов почками, поэтому он играет важную роль в регуляции концентрации фосфатов в плазме наряду с контролем концентрации кальция. Паратгормон является мощным регулятором концентрации кальция и фосфатов, осуществляющим свои влияния, управляя процессами реабсорбции в кишечнике, экскрецией в почке и обменом этих ионов между внеклеточной жидкостью и костью.

Избыточная активность паращитовидных желез вызывает быстрое вымывание солей кальция из костей с последующим развитием гиперкальциемии во внеклеточной жидкости; напротив, гипофункция паращитовидных желез приводит к гипокальциемиии, часто - с развитием тетании.

Функциональная анатомия паращитовидных желез. В норме у человека существуют четыре паращитовидные железы. Они расположены сразу после щитовидной железы, попарно у верхнего и нижнего ее полюсов. Каждая паращитовидная железа является образованием около 6 мм длиной, 3 мм шириной и 2 мм высотой.

Макроскопически паращитовидные железы выглядят как темный бурый жир, определить их местонахождение во время операции на щитовидной железе затруднительно, т.к. они часто выглядят, как дополнительная доля щитовидной железы. Именно поэтому до момента, когда была установлена важность этих желез, тотальная или субтотальная тиреоидэктомия заканчивалась одновременным удалением паращитовидных желез.

Удаление половины околощитовидных желез не вызывает серьезных физиологических нарушений, удаление трех или всех четырех желез приводит к транзиторному гипопаратиреоидизму. Но даже небольшое количество оставшейся ткани паращитовидной железы способно за счет гиперплазии обеспечить нормальную функцию паращитовидных желез.

Паратиреоидные железы взрослого человека состоят преимущественно из главных клеток и из большего или меньшего количества оксифильных клеток, которые отсутствуют у многих животных и у молодых людей. Главные клетки предположительно секретируют большее, если не все количество паратгормона, а у оксифильных клеток - свое предназначение.

Считается, что они являются модификацией или исчерпавшей свой ресурс формой главных клеток, которые больше не синтезируют гормон.

Химическая структура паратгормона. ПТГ выделен в очищенном виде. Первоначально он синтезируется на рибосомах в виде препрогормона, полипептидной цепочки из ПО аминокислотных остатков. Затем расщепляется до прогормона, состоящего из 90 аминокислотных остатков, потом - до стадии гормона, который включает 84 аминокислотных остатка. Процесс этот осуществляется в эндоплазматическом ретикулуме и аппарате Гольджи.

В итоге гормон упаковывается в секреторные гранулы в цитоплазме клеток. Окончательная форма гормона имеет молекулярную массу 9500; более мелкие соединения, состоящие из 34 аминокислотных остатков, примыкающие к N-концу молекулы паратгормона, также выделенные из паращитовидных желез, обладают активностью ПТГ в полной мере. Установлено, что почки полностью выводят форму гормона, состоящую из 84 аминокислотных остатков, очень быстро, в течение нескольких минут, в то время как оставшиеся многочисленные фрагменты длительное время обеспечивают поддержание высокой степени гормональной активности.

Тиреокальцитонин - гормон, вырабатываемый у млекопитающих и у человека парафолликулярными клетками щитовидной железой, паращитовидной железой и вилочковой железой. У многих животных, например, рыб, аналогичный по функциям гормон производится не в щитовидной железе (хотя она есть у всех позвоночных животных), а в ултимобранхиальных тельцах и потому называется просто кальцитонином. Тиреокальцитонин принимает участие в регуляции фосфорно-кальциевого обмена в организме, а также баланса активности остеокластов и остеобластов, функциональный антагонист паратгормона. Тиреокальцитонин понижает содержание кальция и фосфата в плазме крови за счёт усиления захвата кальция и фосфата остеобластами. Он также стимулирует размножение и функциональную активность остеобластов. Одновременно тиреокальцитонин тормозит размножение и функциональную активность остеокластов и процессы резорбции кости. Тиреокальцитонин является белково-пептидным гормоном, с молекулярной массой3600. Усиливает отложение фосфорно-кальциевых солей на коллагеновую матрицу костей. Тиреокальцитонин, как и паратгормон, усиливает фосфатурию.

Кальцитриол

Строение: Представляет собой производное витамина D и относится к стероидам.

Синтез: Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D3) и эргокальциферол (витамин D2) гидроксилируются в печени по С25 и в почках по С1. В результате формируется 1,25-диоксикальциферол (кальцитриол).

Регуляция синтеза и секреции

Активируют: Гипокальциемия повышает гидроксилирование по С1 в почках.

Уменьшают: Избыток кальцитриола подавляет гидроксилирование по С1 в почках.

Механизм действия: Цитозольный.

Мишени и эффекты: Эффект кальцитриола заключается в увеличении концентрации кальция и фосфора в крови:

в кишечнике индуцирует синтез белков, отвечающих за всасывание кальция и фосфатов, в почках повышает реабсорбцию кальция и фосфатов, в костной ткани усиливает резорбцию кальция. Патология: Гипофункция Соответствует картине гиповитаминоза D. Роль 1.25-дигидроксикальци-ферола в обмене Ca и P.: Усиливает всасывание Ca и P из кишечника, Усиливает реабсорбцию Ca и P почками, Усиливает минерализацию молодой кости, Стимулирует остеокласты и выход Ca из старой кости.

Витамин D (кальциферол, антирахитический)

Источники: Имеется два источника поступления витамина D:

печень, дрожжи, жирномолочные продукты (сливочное масло, сливки, сметана), желток яиц,

образуется в коже при ультрафиолетовом облучении из 7-дегидрохолестерола в количестве 0,5-1,0 мкг/сут.

Суточная потребность: Для детей – 12-25 мкг или 500-1000 МЕ, у взрослых потребность гораздо меньше.

С
троение:
Витамин представлен двумя формами – эргокальциферол и холекальциферол. Химически эргокальциферол отличается от холекальциферола наличием в молекуле двойной связи между С22 и С23 и метильной группой при С24.

После всасывания в кишечнике или после синтеза в коже витамин попадает в печень. Здесь он гидроксилируется по С25 и кальциферолтранспортным белком переносится к почкам, где еще раз гидроксилируется, уже по С1. Образуется 1,25-дигидроксихолекальциферол или кальцитриол. Реакция гидроксилирования в почках стимулируется паратгормоном, пролактином, соматотропным гормоном и подавляется высокими концентрациями фосфатов и кальция.

Биохимические функции: 1. Увеличение концентрации кальция и фосфатов в плазме крови. Для этого кальцитриол: стимулирует всасывание ионов Ca2+ и фосфат-ионов в тонком кишечнике (главная функция), стимулирует реабсорбцию ионов Ca2+ и фосфат-ионов в проксимальных почечных канальцах.

2. В костной ткани роль витамина D двояка:

стимулирует выход ионов Ca2+ из костной ткани, так как способствует дифференцировке моноцитов и макрофагов в остеокласты и снижению синтеза коллагена I типа остеобластами,

повышает минерализацию костного матрикса, так как увеличивает производство лимонной кислоты, образующей здесь нерастворимые соли с кальцием.

3. Участие в реакциях иммунитета, в частности в стимуляции легочных макрофагов и в выработке ими азотсодержащих свободных радикалов, губительных, в том числе, для микобактерий туберкулеза.

4. Подавляет секрецию паратиреоидного гормона через повышение концентрации кальция в крови, но усиливает его эффект на реабсорбцию кальция в почках.

Гиповитаминоз. Приобретенный гиповитаминоз.Причина.

Часто встречается при пищевой недостаточности у детей, при недостаточной инсоляции у людей, не выходящих на улицу или при национальных особенностях одежды. Также причиной гиповитаминоза может быть снижение гидроксилирования кальциферола (заболевания печени и почек) и нарушение всасывания и переваривания липидов (целиакия, холестаз).

Клиническая картина: У детей от 2 до 24 месяцев проявляется в виде рахита, при котором, несмотря на поступление с пищей, кальций не усваивается в кишечнике, а в почках теряется. Это ведет к снижению концентрации кальция в плазме крови, нарушению минерализации костной ткани и, как следствие, к остеомаляции (размягчение кости). Остеомаляция проявляется деформацией костей черепа (бугристость головы), грудной клетки (куриная грудь), искривление голени, рахитические четки на ребрах, увеличение живота из‑за гипотонии мышц, замедляется прорезывание зубов и зарастание родничков.

У взрослых тоже наблюдается остеомаляция, т.е. остеоид продолжает синтезироваться, но не минерализуется. Развитие остеопороза частично также связывают с витамин D-‑недостаточностью.

Наследственный гиповитаминоз

Витамин D-зависимый наследственный рахит I типа, при котором имеется рецессивный дефект почечной α1-гидроксилазы. Проявляется задержкой развития, рахитическими особенностями скелета и т.д. Лечение – препараты кальцитриола или большие дозы витамина D.

Витамин D-зависимый наследственный рахит II типа, при котором наблюдается дефект тканевых рецепторов кальцитриола. Клинически заболевание схоже с I типом, но дополнительно отмечаются аллопеция, milia, эпидермальные кисты, мышечная слабость. Лечение варьирует в зависимости от тяжести заболевания, помогают большие дозы кальциферола.

Гипервитаминоз. Причина

Избыточное потребление с препаратами (не менее 1,5 млн МЕ в сутки).

Клиническая картина: Ранними признаками передозировки витамина D являются тошнота, головная боль, потеря аппетита и веса тела, полиурия, жажда и полидипсия. Могут быть запоры, гипертензия, мышечная ригидность. Хронический избыток витамина D приводит к гипервитаминозу, при котором отмечается: деминерализация костей, приводящая к их хрупкости и переломам.увеличение концентрации ионов кальция и фосфора в крови, приводящее к кальцификации сосудов, ткани легких и почек.

Лекарственные формы

Витамин D – рыбий жир, эргокальциферол, холекальциферол.

1,25-Диоксикальциферол (активная форма) – остеотриол, оксидевит, рокальтрол, форкал плюс.

58. Гормоны, производные жирных кислот. Синтез. Функции.

По химической природе гормональные молекулы относят к трем группам соединений:

1)белки и пептиды; 2) производные аминокислот; 3) стероиды и производные жирных кислот.

К эйкозаноидам (είκοσι, греч.-двадцать) относят окисленные производные эйкозановых к-т: эйкозотриеновой (С20:3), арахидоновой (С20:4), тимнодоновой (С20:5) ж-х к-т. Активность эйкозаноидов значительно разнится от числа двойных связей в молекуле, которое зависит от строения исходной ж-ой к-ы. Эйкозаноиды называют гормоноподобными вещ-ми, т.к. они могут оказывать только местное действие, сохраняясь в крови в течение неск-х сек. Обр-ся во всех органах и тканях практически всеми типами кл. Депонироваться эйкозаноиды не могут, разрушаются в течение неск-их сек, и поэтому кл должна синтезировать их постоянно из поступающих жирных кислот ω6- и ω3-ряда. Выделяют три основные группы:

Простагландины (Pg) – синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой системы, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов, типа клетки и условий. Они также влияют на температуру тела. Могут активировать аденилатциклазу Простациклины являются подвидом простагландинов (Pg I), вызывают дилатацию мелких сосудов, но еще обладают особой функцией – ингибируют агрегацию тромбоцитов. Их активность возрастает при увеличении числа двойных связей. Синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение сосудов. Их активность снижается при увеличении числа двойных связей. Увеличивают активность фосфоинозитидного обмена Лейкотриены (Lt) синтезируются в лейкоцитах, в клетках легких, селезенки, мозга, сердца. Выделяют 6 типов лейкотриенов A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления, в целом они активируют реакции воспаления, предотвращая его хронизацию. Также вызывают сокращение мускулатуры бронхов (в дозах в 100-1000 раз меньших, чем гистамин). повышают проницаемость мембран для ионов Са2+. Поскольку цАМФ и ионы Са 2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов.

И
сточником
свободных эйкозановых кислот являются фосфолипиды клеточной мембраны. Под влиянием специфических и неспецифических стимулов активируются фосфолипаза А 2 или комбинация фосфолипазы С и ДАГ-липазы, которые отщепляют жирную кислоту из положения С2 фосфолипидов.

П

олиненасыщенная ж-я к-та метаболизирует в основном 2я путями: циклооксигеназным и липоксигеназным, активность которых в разных клетках выражена в разной степени. Циклооксигеназный путь отвечает за синтез простагландинов и тромбоксанов, липоксигеназный – за синтез лейкотриенов.

Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой к-ты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функ-ую преимущественно на мембранах ЭПС. Обр-ся эйкозаноиды легко проникают ч/з плазматическую мембрану кл, а затем ч/з межклеточное простр-во переносятся на соседние кл или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увел-ся под влиянием гормонов и нейромедиаторов, акт-их аденилатциклазу или повышающих концентрацию ионов Са 2+ в кл. Наиболее интенсивно обр-е простагландинов происходит в семенниках и яичниках. Во многих тканях кортизол тормозит осв-ие арахидоновой к-ты, что приводит к подавлению обр-я эйкозаноидов, и тем самым оказывает противовосп-е действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина. Период полураспада эйкозаноидов составляет 1-20 с. Ферменты, инактивирующие их, имеются пр-ки во всех тканях, но наибольшее их кол-во сод-ся в легких. Лек-я рег-я синтеза: Глюкокортикоиды, опосредованно ч/з синтез специфич белков, блокируют синтез эйкозаноидов, за счет снижения связывания фосфолипидов фосфолипазой А 2 , что предотвращает высвобождение полиненасыщенной к-ты из фосфолипида. Нестероидные противовос-е средства (аспирин, индометацин, ибупрофен) необратимо ингиб-т циклооксигеназу и снижают выработку простагландинов и тромбоксанов.

60. Витамины Е. К и убихинон, их участие в обмене веществ.

Витамины группы Е (токоферолы). Название «токоферол» витамина Е - от греческого «токос» - «рождение» и «ферро» - носить. Его обнаружили в масле из проросших зерен пшеницы. В настоящее время известно семейство токоферолов и токотриенолов, найденных в природных источниках. Все они - метальные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α-токоферол.

Токоферол нерастворим в воде; как и витамины А и D, он растворим в жирах, устойчив к воздействию кислот, щелочей и высокой температуре. Обычное кипячение на него почти не влияет. А вот свет, кислород, ультрафиолетовые лучи или химические окислители действуют губительно.

Витамин Е содержится гл. обр. в липопротеиновых мембранах клеток и субклеточных органелл, где локализован благодаря межмол. взаимод. с ненасыщ. жирными к-тами.Его биол. активность основана на способности образовывать устойчивые своб. радикалы в результате отщепления атома Н от гидроксильной группы. Эти радикалы могут вступать во взаимод. со своб. радикалами, участвующими в образовании орг. пероксидов. Тем самым витамин Е предотвращает окисление ненасыщ. липидов и предохраняет от разрушения биол. мембраны и другие молекулы, например ДНК.

Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь.

Источники: для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.

Суточная потребность взрослого человека в витамине примерно 5 мг.

Клинические проявления недостаточности у человека до конца не изучены. Известно положительное влияние витамина Е при лечении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ.

У
БИХИНОНЫ (коферменты Q)
–широко распространенное вещество и был обнаружен в растениях, грибах, животных и м/о. Относят к группе жирорастворимых витаминоподобных соединений, плохо растворяется в воде, но разрушается при воздействии кислорода и высоких температур. В классическом понимании убихинон не витамин, так как в достаточном количестве синтезируется в организме. Но при некоторых заболеваниях естественный синтез кофермента Q уменьшается и его не хватает для удовлетворения потребности, тогда он становится незаменимым фактором.

У
бихиноны играют важную роль в биоэнергетике клетки большинства прокариот и всех эукариот. Осн. ф-ция убихинонов- перенос электронов и протонов от разл. субстратов к цитохромам при дыхании и окислительном фосфорилировании. Убихиноны, гл. обр. в восстановленной форме (убихинолы, Q n H 2), выполняют ф-цию антиоксидантов. Могут быть простетич. группой белков. Выделены Q-связывающие белки трех классов, действующие в дыхат. цепи на участках функционирования ферментов сукцинату-бихинонредуктазы, НАДН-убихинонредуктазы и цитохромов в и с 1 .

В процессе переноса электронов с NADH-дегидрогеназы через FeS на убихинон он обратимо превращается в гидрохинон. Убихинон выполняет коллекторную функцию, присоединяя электроны от NADH-дегидрогеназы и других флавинзависимых дегидрогеназ, в частности, от сукцинат-дегидрогеназы. Убихинон участвует в реакциях типа:

Е (FMNH 2) + Q → Е (FMN) + QH 2 .

Симптомы дефицита : 1) анемия2) изменения в скел мускулатуре 3) сердечная недост 4) изменения в костном мозге

Симптомы передозировки: возможна только при избыточном введении и обычно проявляется тошнотой, нарушениями стула и болями в животе.

Источники: Растительные - Зародыши пшеницы, растительные масла, орехи, капуста. Животные - Печень, сердце, почки, говядина, свинина, рыба, яйца, курятина. Синтезируется микрофлорой кишечника.

С
уточная потребность:
Считается, что при обычных условиях организм покрывает потребность полностью, но есть мнение, что это необходимое суточное количество составляет 30-45 мг.

Структурные формулы рабочей части коферментов FAD и FMN. В ходе реакции FAD и FMN присоединяют 2 электрона и, в отличие от NAD+, оба теряемых субстратом протона.

63. Витамины С и Р, строение, роль. Цинга.

Витамин Р (биофлавоноиды; рутин, цитрин; витамин проницаемости)

В настоящее время известно, что понятие "витамин Р" объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифенольных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.

Под термином «витамин Р», повышающим резистентность капилляров (от лат. permeability – проницаемость), объединяется группа веществ со сходной биологической активностью: катехины, халконы, дигидрохалконы, флавины, флавононы, изофлавоны, флавонолы и др. Все они обладают Р-витаминной активностью, и в основе их структуры лежит дифенилпропановый углеродный «скелет» хромона или флавона. Этим объясняется их общее название «биофлавоноиды».

Витамин Р усваивается лучше в присутствии аскорбиновой кислоты, а высокая температура легко её разрушает.

Источники: лимоны, гречиха, черноплодная рябина, чёрная смородина, листья чая, плоды шиповника.

Суточная потребность для человека Составляет, в зависимости от образа жизни, 35-50 мг в день.

Биологическая роль флавоноидов заключается в стабилизации межклеточного матрикса соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием.

-Витамин Р "оберегает" гиалуроновую кислоту, которая укрепляет стенки сосудов и является основным компонентом биологической смазки суставов, от разрушающего действия ферментов гиалуронидаз. Биофлавоноиды стабилизируют основное вещество соединительной ткани путем ингибирования гиалуронидазы, что подтверждается данными о положительном влиянии Р-витаминных препаратов, как и аскорбиновой кислоты, в профилактике и лечении цинги, ревматизма, ожогов и др. Эти данные указывают на тесную функциональную связь витаминов С и Р в окислительно-восстановительных процессах организма, образующих единую систему. Об этом косвенно свидетельствует лечебный эффект, оказываемый комплексом витамина С и биофлавоноидов, названный аскорутином. Витамин Р и витамин С тесно связаны между собой.

Рутин повышает активность аскорбиновой кислоты. Защищая от окисления, помогает лучшему её усвоению, он по праву считается "главный партнёр" аскорбинки. Укрепляя стенки кровеносных сосудов и уменьшая их ломкость, он тем самым снижает риск внутренних кровоизлияний, предупреждает образование атеросклеротических бляшек.

Нормализует повышенное артериальное давление, способствуя расширению сосудов. Способствует формированию соединительной ткани, а следовательно быстрому заживлению ран и ожогов. Способствует профилактике варикозного расширения вен.

Положительно влияет на работу эндокринной системы. Используется для профилактики и дополнительного средства в лечении артрита ― тяжелого заболевания суставов и подагры.

Повышает иммунитет, обладает противовирусной активностью.

Заболевания: Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях.

Гипервитаминоз: Флавоноиды не токсичны и случаев передозировки не замечено, поступившие с пищей излишки легко выводятся из организма.

Причины: Недостаток биофлавоноидов может возникать на фоне длительного приема антибиотиков (или в больших дозах) и других сильнодействующих препаратов, при любом неблагоприятном воздействии на организм, например, травма или хирургическое вмешательство.

Заболевания, связанные с изменением фосфорно-кальциевого обмена, встречаются у людей обоих полов вне зависимости от возраста. Фосфор и кальций являются жизненно необходимыми, незаменимыми для полноценного здоровья человека химическими веществами. Наверняка каждый из нас знает, что в составе костной ткани содержится более 90 % кальция и порядка 80 % запасов фосфора со всего организма. В незначительном количестве эти компоненты имеются в ионизированной плазме крови, нуклеиновых кислотах и фосфолипидах.

Метаболизм кальция и фосфора в раннем возрасте

В течение первого года жизни риск нарушения обменных процессов наиболее высок, что связывают со стремительным ростом и темпами развития малыша. В норме ребенок за первые 12 месяцев утраивает массу тела, данную от рождения, а с 50 среднестатистических сантиметров при рождении годовалый карапуз вырастает до 75. У детей фосфорно-кальциевый обмен проявляется относительным или абсолютным дефицитом полезных минералов и веществ в организме.

К появлению подобных проблем приводят многочисленные факторы:

  • недостаток витамина D;
  • нарушение его метаболизма из-за незрелости ферментных систем;
  • ухудшение кишечной абсорбции и почечной реабсорбции фосфора и кальция;
  • заболевания эндокринной системы.

Намного реже диагностируются гиперкальциемические состояния, которые представляют собой и фосфора. Чрезмерное количество химических веществ в организме не менее опасно для здоровья ребенка и требует медикаментозной коррекции. Однако добиться такого состояния при обычном рационе практически невозможно. Так суточная потребность в кальции у грудничков приравнивается 50 мг на 1 кг массы тела. Следовательно ребенок, который весит около 10 кг, должен получать ежедневно около 500 мг Са. В 100 мл материнского молока, которое является единственным источником полезных веществ, содержится около 30 мл Са, а в коровьем - более 100 мг.

Биохимия фосфорно-кальциевого обмена

После попадания указанных химических веществ в организм происходит их всасывание в кишечнике, затем взаимообмен между кровью и костной тканью с последующим выделением кальция и фосфора из организма с мочой. Данный этап именуется реабсорбцией, которая протекает в почечных канальцах.

Главным показателем успешно пройденного обмена Ca является его концентрация в крови, которая в норме варьируется в пределах 2,3-2,8 ммоль/л. Оптимальным содержанием считается 1,3-2,3 ммоль/л. Важными регуляторами в кальциево-фосфорного обмена является витамин D, паратиреоидный гормон и кальцитонин, вырабатывающийся щитовидной железой.

Половина содержащегося в крови кальция имеет непосредственную связь с плазменными белками, в частности альбумином. Остальная часть - это ионизированный кальций, который просачивается через капиллярные стенки в лимфатическую жидкость. служит регулятором множества внутриклеточных процессов, включая передачу импульсов через мембрану в клетку. Благодаря этому веществу в организме поддерживается определенный уровень нервно-мышечной возбудимости. Кальций, связанный с белками плазмы, представляет собой своего рода резервный запас для сбережения минимального уровня ионизированного кальция.

Причина развития патологических процессов

Преимущественная доля фосфора и кальция сосредоточена в неорганических солях костной ткани. На протяжении всей жизни твердые ткани формируются и разрушаются, что обусловлено взаимодействием нескольких типов клеток:

  • остеобластов;
  • остеоцитов;
  • остеокластов.

Костная ткань активно участвует в регуляции фосфорно-кальциевого обмена. Биохимия данного процесса гарантирует поддержание их стабильного уровня в крови. Как только концентрация данных веществ падает, что становится явно по показателю 4,5-5,0 (его высчитывают по формуле: Са, умноженный на Р), кость начинает стремительно разрушаться по причине повышенной активности остеокластов. Если данный показатель значительно превышает указанный коэффициент, соли начинают откладываться в костях в избыточном количестве.

Все факторы, негативно влияющие на поглощение кальция в кишечнике и ухудшающие его почечную реабсорбцию, являются прямыми причинами развития гипокальциемии. Нередко при данном состоянии происходит вымывание Ca из костей в кровоток, что неизбежно ведет к остеопорозу. Излишнее всасывание кальция в кишечнике, наоборот, влечет за собой развитие гиперкальциемии. В этом случае патофизиология фосфорно-кальциевого обмена компенсируется интенсивным отложением Са в кости, а оставшаяся часть покидает организм вместе с мочой.

Если организм оказывается неспособным поддержать нормальный уровень кальция, вполне закономерным следствием являются заболевания, вызванные дефицитом химического элемента (как правило, наблюдаются проявления тетании) либо его переизбытком, что характеризуется развитием токсикоза, отложением Ca на стенках внутренних органов, хрящей.

Роль витамина D

В регуляции фосфорно-кальциевого обмена участвует эргокальциферол (D2) и холекальциферол (D3). Первая разновидность вещества присутствует в малых количествах в маслах растительного происхождения, пшеничных ростках. Витамин D3 более популярен - о его роли в процессах усвоения кальция известно каждому. Холекальциферол содержится в рыбьем жире (преимущественно лососевом и тресковом), куриных яйцах, молочных и кисломолочных продуктах. Суточная потребность человека в витамине D составляет приблизительно 400-500 МЕ. Потребность в данных веществах увеличивается у женщин в период беременности и лактации, поэтому может достигать 800-1000 МЕ.

Полноценное поступление в организм холекальциферола можно обеспечить не только потреблением указанных продуктов или витаминных добавок к пище. Витамин D образуется в кожных покровах под воздействием УФ-лучей. При минимальной продолжительности инсоляции в эпидермисе происходит синтез необходимого организму количества витамина D. По некоторым данным достаточно десяти минут пребывания на солнце с открытыми кистями рук.

Причиной недостатка естественной ультрафиолетовой инсоляции являются, как правило, метеоклиматические и географические условия местности проживания, а также бытовые факторы. Возместить недостаток витамина D можно, употребляя продукты с повышенным содержанием холекальциферола или принимая лекарственные препараты. У беременных женщин данное вещество накапливается в плаценте, что гарантирует новорожденному защиту от рахита на протяжении первых месяцев жизни.

Поскольку основным физиологическим предназначением витамина D является участие в процессах биохимии фосфорно-кальциевого обмена, нельзя исключать его роль в обеспечении полноценного всасывания кальция кишечными стенками, отложение солей микроэлемента в костных тканях, реабсорбции фосфора в почечных канальцах.

В условиях дефицита кальция холекальциферол запускает процессы деминерализации костей, усиливает всасывание Ca, стараясь повысить тем самым уровень его содержания в крови. Как только концентрация микроэлемента достигает нормы, начинают действовать остеобласты, которые снижают резорбцию кости и препятствуют ее кортикальной порозности.

Ученые смогли доказать, что клетки внутренних органов чувствительны к кальцитриолу, участвующему в системной регуляции ферментных систем. Запуск соответствующих рецепторов через аденилатциклазу обуславливает взаимодействие кальцитриола с белком-кальмодулином и усиливает передачу импульса ко всему внутреннему органу. Эта связь производит иммуномодулирующий эффект, обеспечивает регуляцию гипофизарных гормонов, а также косвенно влияет на продуцирование инсулина поджелудочной железой.

Участие паратиреоидного гормона в метаболических процессах

Не менее значимым регулятором является паратгормон. Вырабатывается данное вещество паращитовидными железами. Количество паратиреоидного гормона, регулирующего фосфорно-кальциевый обмен, повышается в крови при недостатке поступления Са, ведущего за собой снижение в плазме содержания ионизированного кальция. В этом случае гипокальциемия становится косвенной причиной поражения почек, костей и пищеварительной системы.

Паратиреоидный гормон провоцирует увеличение кальциевой и магниевой реабсорбции. При этом реабсорбция фосфора заметно снижается, что приводит к гипофосфатемии. В ходе лабораторных исследований удалось доказать, что паратгормон увеличивает вероятность проникновения в почки кальцитриола и, как следствие, повышения кишечной абсорбции кальция.

Присутствующий в костной ткани под воздействием паратгормона кальций меняет твердую форму на растворимую, за счет чего химический элемент мобилизуется и выходит в кровь. Патофизиология фосфорно-кальциевого обмена объясняет развитие остеопороза.

Таким образом, паратиреоидный гормон помогает сберегать нужное количество кальция в организме, участвуя в гомеостазе данного вещества. При этом функцией постоянной регуляции фосфора и кальция в организме наделен витамин D и его метаболиты. Продуцирование паратгормона стимулируется низким содержанием кальция в крови.

Для чего задействуется кальцитонин

Фосфорно-кальциевый обмен нуждается в третьем незаменимом участнике - кальцитонине. Это также гормональное вещество, вырабатываемое С-клетками щитовидной железы. На гомеостаз кальция кальцитонин действует как антагонист паратгормона. Темпы продуцирования гормона возрастают при повышенной концентрации уровня фосфора и кальция в крови и снижаются при недостающем поступлении в организм соответствующих веществ.

Спровоцировать активную секрецию кальцитонина можно с помощью диетического питания, обогащенного кальцийсодержащими продуктами. Данный эффект нейтрализуется глюкагоном - естественным стимулятором выработки кальцитонина. Последний оберегает организм от гиперкальциемических состояний, минимизирует активность остеокластов и не допускает рассасывания костей путем интенсивного накопления Ca в костной ткани. «Лишний» кальций, благодаря кальцитонину, выводится из организма с мочой. Предполагается возможность ингибирующего влияния стероида на образование в почках кальцитриола.

Помимо паратиреоидного гормона, витамина D и кальцитонина, влиять на фосфорно-кальциевый обмен способны и другие факторы. Так, например, препятствовать всасыванию Са в кишечнике могут такие микроэлементы, как магний, алюминий, силен, замещая кальциевые соли костной ткани. При затяжном лечении глюкокортикоидами развивается остеопороз, и кальций вымывается в кровь. В процессе всасывания в кишечнике витамина А и витамина D преимущество имеет первый, поэтому употреблять продукты, содержащими данные вещества, необходимо в разное время.

Гиперкальциемия: последствия

Наиболее распространенным нарушением фосфорно-кальциевого обмена считается гиперкальциемия. Повышенное содержание Са в сыворотке крови (более 2,5 ммоль/л) - характерная особенность гиперсекреции и гипервитаминоза D. В анализах фосфорно-кальциевого обмена увеличенное содержание кальция может свидетельствовать о наличии злокачественной опухоли в организме или синдроме Иценко-Кушинга.

Высокая концентрация данного химического элемента свойственна пациентам с язвенной болезнью желудочно-кишечного тракта. Зачастую причиной становится чрезмерное употребление молочных продуктов. Гиперкальциемия - идеальное условие для образования конкрементов в почках. Фосфорно-кальциевый обмен влияет на работу всей мочевыделительной системы, понижает нервно-мышечную проводимость. В тяжелых случаях не исключается вероятность развития пареза и паралича.

У ребенка следствием затяжной гиперкальциемии может стать задержка роста, регулярные расстройства стула, постоянная жажда, мышечный гипотонус. При нарушениях фосфорно-кальциевого обмена у детей развивается артериальная гипертензия, поражается ЦНС, что выражается спутанностью сознания, провалами памяти.

Чем грозит дефицит кальция

Гипокальциемия диагностируется намного чаще, чем гиперкальциемия. В большинстве случаев выясняется, что причиной недостатка кальция в организме служит гипофункция околощитовидных желез, активная выработка кальцитонина и плохая всасываемость вещества в кишечнике. Кальциевый дефицит нередко развивается в послеоперационном периоде как ответная реакция организма на введение внушительной дозы щелочного раствора.

У пациентов с нарушениями фосфорно-кальциевого обмена симптомы выглядят следующим образом:

  • возникает повышенная возбудимость нервной системы;
  • развивается тетания (болезненные сокращения мышц);
  • постоянным становится ощущение «мурашек» на коже;
  • возможны приступы судорог и нарушения дыхательных функций.

Особенности течения остеопороза

Это наиболее распространенное последствие расстройств, связанных с фосфорно-кальциевым обменом в организме. Для данного патологического состояния свойственна низкая масса кости и изменение структуры костной ткани, что приводит к повышению ее ломкости и хрупкости, а значит, и возрастанию риска перелома. Врачи практически единогласно сходятся во мнении о том, что остеопороз является болезнью современного человека. Риск развития остеопороза особенно высок в пожилом возрасте, однако при отрицательном влиянии технического прогресса, снижении физической активности и воздействии ряда неблагоприятных экологических факторов возрастает удельный вес пациентов зрелого возраста.

Каждый год остеопороз диагностируется у 15-20 млн человек. Преимущественное большинство пациентов - женщины в климактерический период, а также молодые женщины после удаления яичников, матки. Порядка 2 млн случаев переломов ежегодно имеют связь с остеопорозом. Это и переломы шейки бедра, позвоночника, костей конечностей и других участков скелета.

Если брать во внимание сведения от ВОЗ, то патологии скелета и костной ткани по распространенности среди населения Земли уступают только сердечно-сосудистым, раковым заболеваниям и сахарному диабету. Остеопороз способен поразить различные участки скелета, поэтому переломам могут подвергаться любые кости, особенно если недугу сопутствует значительная потеря массы тела.

Метаболические заболевания скелета, в частности остеопороз, характеризуются существенным снижением концентрации микроэлементов, при котором кость резорбируется намного быстрее, чем формируется. Таким образом, теряется костная масса и возрастает риск перелома.

Рахит у детей

Данный недуг является прямым следствием сбоев в фосфорно-кальциевом обмене. Рахит развивается, как правило, в раннем детском возрасте (до трех лет) при нехватке витамина D и нарушениях процессов всасывания микроэлементов в тонком кишечнике и почках, что ведет к изменению пропорции кальция и фосфора в крови. Стоит отметить, что и взрослые люди, проживающие в северных широтах, нередко испытывают проблемы с фосфорно-кальциевым метаболизмом из-за недостатка ультрафиолетового облучения и непродолжительного пребывания на свежем воздухе в течение года.

На начальном этапе заболевания диагностируется гипокальциемия, которая запускает работу околощитовидных желез и вызывает гиперсекрецию паратгормона. Далее, как по цепочке: активируются остеокласты, нарушается синтез белковой основы кости, минеральные соли откладываются в недостающем количестве, вымывание кальция и фосфора приводит к гиперкальциемии и гипофосфатемии. В результате у ребенка происходит задержка физического развития.

Характерными проявлениями рахита являются:

  • анемия;
  • повышенная возбудимость и раздражительность;
  • судороги конечностей и развитие мышечного гипотонуса;
  • усиленное потоотделение;
  • расстройства пищеварительной системы;
  • учащенное мочеиспускание;
  • Х-образные или О-образных голени;

  • запоздалое прорезывание зубов и склонность к стремительному прогрессированию кариозной инфекции ротовой полости.

Как лечить такие заболевания

При метаболических нарушениях требуется сложное комплексное лечение. Фосфорно-кальциевый обмен, приведенный в норму, позволит устранить большинство патологических последствий без какого-либо вмешательства. Терапия остеопороза, рахита и других метаболических нарушений проходит поэтапно. В первую очередь специалисты стараются остановить процессы резорбции с целью предотвратить переломы, устранить болевой синдром и вернуть больного к трудоспособному состоянию.

Препараты для кальциево-фосфорного обмена подбираются, исходя из симптоматики вторичного заболевания (чаще всего остеопороза, рахита) и патогенеза костной резорбции. Немаловажное значение для выздоровления имеет соблюдение диеты, выстроенной по принципу сбалансированности белков, солей кальция и фосфора. В качестве вспомогательных методов терапии больным рекомендуется массаж, лечебная гимнастика.

Препараты для нормализации фосфорно-кальциевого метаболизма

В первую очередь больным назначают лекарства с высоким содержанием витамина D. Данные препараты условно разделяются на две группы - средства на основе холекальциферола и эргокальциферола.

Первое вещество стимулирует всасываемость в кишечнике за счет улучшения проницаемости эпителиальных мембран. В основном, витамин D3 применяется для профилактики и лечения рахита у малышей. Выпускается в водорастворимой («Аквадетрим») и масляной формах («Вигантол», «Видеин»).

Эргокальциферол всасывается в кишечнике при активной выработке желчи, после чего связывается альфа-глобулинами крови, накапливается в костной ткани, остается в качестве неактивного метаболита печени. Имеющий широкое применение в недавнем прошлом рыбий жир сегодня не рекомендуется педиатрами. Причиной отказа от использования данного средства служит вероятность возникновения побочных эффектов со стороны поджелудочной железы, но, несмотря на это, в аптеках по-прежнему предлагают рыбий жир в виде БАДа.

Помимо витамина D, в лечении нарушений фосфорно-кальциевого обмена используют:

  • Монопрепараты кальция, содержащие необходимый химический элемент в виде солей. Вместо популярного ранее «Глюконата кальция», который плохо всасывается в кишечнике, теперь применяют «Глицерофосфат кальция», «Кальция лактат», «Хлорид кальция».
  • Комбинированные препараты. Чаще всего комплексы, сочетающие в своем составе кальций, витамин D и другие микроэлементы для облегчения поглощения ионов кальция («Натекаль», «Витрум кальций + витамин Д3», «Ортокальций» с магнием и др.
  • Синтетические аналоги паратиреоидного гормона. Используются инъекционно или в виде назальных спреев. В таблетках такие препараты не выпускаются, так как при пероральном применении действующие вещества полностью разрушаются в желудке. К данной группе относят спреи «Миакальцик», «Вепрена», «Остеовер», порошок «Кальцитонин».

Биохимия

Тканей зуба

Пародонта УДК 616.31:577.1

Забросаева Л.И. Биохимия тканей зуба и пародонта. (Учебно-методическое пособие). Смоленск, СГМА, 2007, 74 с.

Рецензенты:

А.А.Чиркин, профессор, доктор биологических наук, заведующий кафедрой биохимии Витебского государственного университета им. П.Машерова.

В.В.Алабовский, профессор, доктор медицинских наук, заведующий кафедрой биохимии Воронежской государственной медицинской академии.

Учебно-методическое пособие составлено в соответствии с учебной про­граммой Министерства образования РФ (1996г) для стоматологического факультета медицинских вузов. В данное пособие включены вопросы биохимии соединительной ткани, тканей зуба и пародонта, а также имеющие к ним непосредственное отношение сведения о фосфорно-кальциевом обмене, его регуляции, биохимических аспектах минерализации твёрдых тканей зуба и кости, метаболических функциях фтора.

Пособие предназначается для студентов стоматологического факультета, врачей-интернов, ординаторов. Отдельные главы могут представлять интерес для студентов лечебного и педиатрического факультетов.

Таблиц 2, рисунков 15. Список литературы 78 названий.

Смоленск, СГМА, 2007


Фосфорно-кальциевый обмен и его регуляция.

Кальций - один из пяти (О, С, Н, N, Са) наиболее распространённых элементов, встречающихся в организме человека и животных. В тканях организма взрослого человека содержится до 1-2 кг кальция, 98-99 % которого локализовано в костях скелета. Входя в состав минерализованных тканей в виде фосфорнокислых солей и апатитов различных видов, кальций выполняет пластическую и опорную функции. Внекостный кальций, на долю которого приходится около 1-2% от его общего содержания в организме, также выполняет чрезвычайно важные функции:

1. Ионы кальция участвуют в проведении нервных импульсов, особенно в области ацетилхолиновых синапсов, способствуя высвобождению медиаторов.

2. Ионы кальция участвуют в механизме мышечного сокращения, инициируя при их поступлении в саркоплазму взаимодействие актина и миозина. Из саркоплазмы ионы кальция выкачиваются в цистерны саркоплазматического ретикулума Са2+ - зависимой АТФ-азой или т. н. «кальциевым насосом». При этом происходит мышечная релаксация.

3. Ионы кальция являются кофактором ряда ферментов, участвующих в синтезе белков, гликогена, в энергетическом обмене и других процессах.

4. Ионы кальция легко образуют межмолекулярные мостики, сближают молекулы, активируя их взаимодействие внутри клеток и между клетками. Этот факт объясняет участие кальция в фагоцитозе, пиноцитозе, адгезии клеток.

5. Ионы кальция являются необходимым компонентом системы свёртывания крови.

6. В комплексе с белком кальмодулином ионы кальция являются одним из вторичных посредников действия гормонов на внутриклеточный метаболизм.

7. Ионы кальция увеличивают проницаемость клеток для ионов калия, влияют на работу ионных каналов.

8. Избыточное накопление ионов кальция внутри клеток ведёт к их деструкции и последующей гибели.

Кальций поступает в организм в составе пищи в виде солей: фосфатов, бикарбонатов, тартратов, оксалоацетатов, всего - около 1г в сутки. Большинство солей кальция плохо растворимы в воде, чем объясняется их ограниченное усвоение в желудочно-кишечном тракте. У взрослых всасывается из желудочно-кишечного тракта в среднем 30 % всего кальция пищи, у детей и беременных - больше. Во всасывании кальция из просвета кишечника участвуют Са2+-связывающий белок, Са2+-зависимая АТФ - аза, АТФ. Витамин D, лактоза, лимонная кислота, белки повышают всасывание кальция из желудочно-кишечного тракта, а алкоголь в высоких дозах и жиры - понижают.

Транспорт кальция кровью происходит в комплексе с органическими и неорганическими кислотами, а также с альбуминами и, в меньшей степени - с глобулинами плазмы. Эти транспортные формы кальция суммарно составляют связанный кальций крови - своеобразное депо кальция крови. Помимо этого в крови имеется также ионизированный кальций, составляющий в норме 1,1-1,3 ммоль/л. Общее содержание кальция в сыворотке крови составляет 2,2-2,8 ммоль/л. Гипокальциемия имеет место при рахите, гипопаратиреозе, при низком содержании кальция в пище и нарушении всасывания его в желудочно-кишечном тракте. Гиперкальциемия отмечается при гиперпаратиреозе, гипервитаминозе D и других патологических состояниях. Ион кальция и парный ему ион фосфата присутствуют в плазме крови в концентрациях, близких к пределу растворимости их солей. Поэтому связывание кальция белками плазмы предупреждает возможность образования осадка и эктопической кальцификации тканей. Изменение концентрации альбуминов, и в меньшей степени глобулинов, в сыворотке крови сопровождается изменением соотношения концентраций ионизированного и связанного кальция. Кислый сдвиг рН внутренней среды организма способствует переходу кальция в ионизированную форму, а щелочной, наоборот - связыванию его с белками.

Из крови кальций поступает в минерализованные и, в меньшей степени - в другие ткани. В организме костная ткань выполняет роль депо кальция. В надкостнице содержится легко обменивающийся кальций, составляющий около 1% всего кальция скелета. Это мобильный пул кальция. Способностью к аккумуляции кальция обладают митохондрии, ядра, цистерны саркоплазматического и эндоплазматического ретикулума. Они содержат Са2+-зависимые АТФ-азы, осуществляющие сопряжённый с гидролизом АТФ выброс ионов кальция из цитоплазмы во внеклеточную жидкость (сокращение мышцы) и закачивание Са2+ в цистерны саркоплазматической сети (расслабление мышцы). Кальций - это типичный внеклеточный катион. Концентрация кальция внутри клеток - менее 1 мкмоль/л. Если она повышается более 1мкмоль/л, то происходит изменение активности многих ферментов, которое влечёт за собой нарушение нормального функционирования клетки. Повышение проницаемости клеточных мембран при различных патологических состояниях также сопровождается активацией транспорта ионов кальция внутрь клеток. При этом происходит повышение активности мембранной фосфолипазы А2, освобождение полиненасыщенных жирных кислот, активация процессов перекисного окисления липидов в мембранах и повышенное образование эйкозаноидов, что приводит к дальнейшему увеличению проницаемости мембранных структур вплоть до развития деструктивных изменений в них, ведущих к гибели клетки. Известен, например, т. н. «кальциевый парадокс» - резкое ухудшение функции сердечной мышцы и общего состояния организма в постишемической фазе миокарда.

Выведение кальция из организма осуществляется главным образом через кишечник в составе жёлчи, желудочного сока, слюны и секрета поджелудочной железы (всего около 750 мг/сутки). С мочой выделяется мало кальция (около 100 мг/сутки), т.к. 97-99% кальция первичной мочи реабсорбируется в извитых канальцах почек. После достижения 35 летнего возраста суммарная экскреция кальция из организма человека возрастает.

Фосфор, как и кальций, является одним из жизненно необходимых элементов. В организме взрослого человека содержится ~1 кг фосфора. 85% этого количества выполняет структурную и минерализующую функции, входя в состав костей скелета. Значительная часть фосфора является составной частью различных органических веществ: фосфолипидов, некоторых коферментов, макроэргических соединений, нуклеиновых кислот, нуклеотидов, фосфопротеинов, фосфорнокислых эфиров глицерина, моносахаридов и других соединений. Участвуя в реакциях фосфорилирования и дефосфорилирования различных органических соединений, фосфат выполняет регуляторную функцию. Эти процессы происходят с участием специфических протеинкиназ. Таким путём регулируется активность многих ключевых ферментов: фосфорилазы, гликогенсинтазы, а также ядерных, мембранных белков и других соединений. Неорганический фосфат входит в состав фосфатной буферной системы: NaH2РО4 / Na2HРО4 и тем самым участвует в поддержании кислотно-щёлочного состояния крови и тканей.

Основным источником фосфора для организма человека является пища. Содержание фосфора в суточном пищевом рационе человека варьирует от 0,6 до 2,8г и зависит от состава и количества потребляемой пищи. Основное количество фосфора поступает в составе молока, мяса, рыбы, изделий из муки и, в меньшей степени, - с овощами. В желудочно-кишечном тракте фосфор усваивается лучше, чем кальций: всасывается 60-70% пищевого фосфора. Обмен фосфора тесно связан с обменом кальция, начиная с поступления в организм в составе пищи и кончая выделением из организма. Их объединяет также общая эндокринная регуляция.

В плазме крови фосфор находится в трёх формах: ионизированной (55 %), связанной с белками (10 %), связанной с комплексонами Nа, Са, Мg (35%). В норме содержание неорганического фосфата в сыворотке крови взрослого человека составляет 0,75 - 1,65 ммоль/л и зависит от возраста, пола, характера питания и т.п. В сыворотке крови детей содержание неорганического фосфата выше, чем у взрослых и зависит от интенсивности роста. Гиперфосфатемия отмечается при хронической почечной недостаточности, заживлении перелома кости, при гипофизарном гигантизме, некоторых опухолях кости, гипервитаминозе D. Гипофосфатемия имеет место при рахите, гиперпаратиреозе, низком содержании фосфора в пище и нарушении его всасывания в кишечнике, а также при поступлении в организм большого количества углеводов. Содержание фосфатов в клетках крови превышает их содержание в плазме в 30-40 раз. В клетках, в отличие от плазмы крови, преобладает органический фосфат, например, в эритроцитах - 2,3 дифосфоглицерат, АТФ, глюкозо-6 фосфат, фосфотриозы и другие фосфорно-кислые эфиры органических веществ. Концентрация органического фосфата в клетке выше, чем неорганического почти в 100 раз. В плазме крови преобладает неорганический фосфат, который, поступая в клетки, используется для реакций фосфорилирования различных органических веществ. Показано, например, что поступление повышенного количества глюкозы в клетки сопровождается снижением содержания неорганического фосфата в плазме крови.

Роль депо фосфора выполняют кости скелета, в состав которых фосфор входит в виде различного вида апатитов и фосфорно-кальциевых солей. Выведение фосфора из организма осуществляется, главным образом, через почки (64,4%), а также с калом (35,6%). Ничтожно малое количество фосфора экскретируется с потом. В извитых канальцах почек реабсорбируется до 90% фосфора. Реабсорбция фосфора зависит от реабсорбции натрия. Усиление экскреции натрия с мочой сопровождается повышением экскреции фосфора. В составе мочи преобладают однозамещённые фосфаты (NaН2РО4), а в плазме крови - двузамещённые (Na2НРО4). В моче соотношение NаН2РО4 / Nа2НРО4 равно 50/1, а в плазме крови оно составляет 1/4.

В регуляции фосфорно-кальциевого обмена участвуют паратгормон, кальцитонин, витамин D. Паратгормон (ПТГ) синтезируется в паращитовидных железах (парном органе), а также частично в тимусе и щитовидной железе. По химической структуре - это белок с молекулярной массой 9500, состоящий из 84 аминокислот. Он вырабатывается в виде препрогормона (115 аминокислот), путём частичного протеолиза преобразуется в прогормон (90 аминокислот), а затем - в активный ПТГ (84 аминокислоты). Синтез и секреция ПТГ возрастают при снижении концентрации кальция в крови. Период полураспада ПТГ составляет 20 минут, его органы - мишени: кость и почки. В костях ПТГ (в больших дозах) стимулирует распад коллагена и переход кальция и фосфора из кости в кровь, в почках он повышает реабсорбцию кальция, но снижает реабсорбцию фосфора, что приводит к фосфатурии и уменьшению концентрации фосфора в крови. Концентрация кальция в крови при этом повышается. ПТГ способствует также превращению витамина D в почках в его активную форму - кальцитриол (1,25 дигидроксихолекальциферол). В связи с этим он может опосредованно (через кальцитриол) активировать всасывание кальция в тонком кишечнике.

Секреция ПТГ зависит только от концентрации кальция в крови и не контролируется другими железами внутренней секреции. Концентрация фос­фора в плазме крови не влияет на секрецию ПТГ. Недостаточность функции паращитовидных желёз может развиться при операциях на шее, случайном удалении или повреждении паращитовидных желёз, а также вследствие их аутоиммунной деструкции. Кажущийся эффект гипопаратиреоза может быть связан со снижением чувствительности рецепторов органов - мишеней к парат­гормону. Клиническими симптомами гипопаратиреоза являются гипо­кальциемия, гиперфосфатемия, повышение нервно-мышечной возбудимости, судороги, тетания. Может наступить смерть вследствие спазма дыхательных мышц и ларингоспазма. Устранить последствия гипокальциемии можно введением в организм препаратов кальция, паратгормона, витамина D.

Гиперпаратиреоз проявляется гиперкальциемией, гипофосфатемией, фосфатурией, резобцией костной ткани, приводящей к частым переломам костей; камнеобразованием в почках, нефрокальцинозом, снижением функции почек. Причинами гиперпаратиреоза могут быть аденома паращитовидных желёз, а также некоторые патологические состояния почек, приводящие к уменьшению образования кальцитриола в почках и снижению концентрации кальция в крови. В ответ на гипокальциемию возрастает продукция и секреция ПТГ. Стойкая гиперкальциемия может привести к развитию комы и гибели от паралича мышц.

Кальцитонин - это пептид с Мr 3200, состоящий из 32 аминокислот. Он синтезируется в щитовидной и паращитовидных железах, секретируется в ответ на гиперкальциемию, снижая концентрацию кальция и фосфора в крови. Механизм действия кальцитонина состоит в том, что он подавляет мобилизацию кальция и фосфора из кости, способствует минерализации кости. Кальцитонин является антагонистом ПТГ, так как поддерживает «тонус» кальция в крови. При гиперпродукции кальцитонина может развиться остеосклероз - увеличение массы кости на единицу её объёма.

Витамин D - это группа веществ - кальциферолов, обладающих антирахитической активностью. Важнейшие среди них - холекальциферол (витамин D3), эргокальциферол (витамин D2) и дигидроэргокальциферол (витамин D4) относятся к группе стероидных соединений. Витамин D3 содержится в пище животного происхождения: в рыбьем жире, печени, желтке куриного яйца, сливочном масле. Этот витамин может также синтезироваться в коже из холестерина под воздействием ультрафиолетовых лучей (эндогенный витамин D3). Эргокальциферолы имеют растительное происхождение. Однако, ни эрго-, ни холекальциферолы не обладают биологической активностью. Их биологически активные формы образуются в процессе метаболизма. Пищевые и эндогенные кальциферолы с током крови приносятся в печень. В гепатоцитах с участием специфической монооксигеназной системы, включающей 25-гидроксилазу кальциферолов, NADH и молекулярный кислород, осуществляется первый этап гидроксилирования витамина D3, в результате чего у 25-го атома углерода появляется ОН-группа.

Затем 25 (ОН) производное витамина D3 с помощью кальциферолсвязывающего белка плазмы крови переносится в почки, где подвергается второму этапу гидроксилирования с участием 1 альфа-гидроксилазы кальциферолов, NADH, молекулярного кислорода и превращается в 1,25 дигидроксихолекальциферол, или кальцитриол,-биологически активную форму витамина D (рис.1).

Рис.1. Формулы предшественника витамина D3 --7дегидрохолестерола, витамина D3 и кальцитриола.

Кальцитриол (1,25 дигидроксихолекальциферол) имеет следующие органы - мишени: кишечник, костная ткань, почки. В кишечнике он повышает всасывание кальция и фосфора против градиента концентрации с участием АТФ и кальцийсвязывающего белка, образование которого происходит под действием кальцитриола. В минерализованных тканях кальцитриол в физиологических дозах повышает синтез коллагена, кальцийсвязывающих белков, сиалогликопротеинов межклеточного вещества, а также специфического белка дентина фосфофорина и специфических белков эмали: амелогенинов, энамелинов, способствуя их минерализации. В почечных канальцах он активирует реабсорбцию кальция и фосфора. В итоге витамин D обусловливает оптимальное содержание кальция и фосфора в плазме крови, необходимое для минерализации костной ткани, тканей зуба и пародонта. Биологическую функцию витамина D можно обозначить также как кальций, фосфор сберегающую.

При недостаточности витамина D в организме детей развивается рахит. Основные клинические симптомы рахита: снижение концентраций кальция и фосфора в крови, нарушение минерализации костной ткани, что ведёт к деформации опорных костей скелета. Характерны также атония мышц, позднее прорезывание зубов, нарушение зубного ряда. Чаще всего причинами рахита являются недостаточное содержание витамина D в пище, нарушение всасывания его в желудочно-кишечном тракте, а также недостаточность действия ультрафиолетовых лучей на организм. У детей с патологией печени и почек встречаются также формы рахита, связанные с нарушением превращения кальциферолов в их активные формы. Причиной рахита также может быть генетически обусловленная недостаточность монооксигеназных систем, которые участвуют в образовании биологически активных форм витамина D3. В некоторых случаях развитие рахита может быть обусловлено отсутствием или недостаточностью рецепторов к кальцитриолу.

Недостаточность витамина D у взрослых вызывает остеомаляцию (размягчение костей), нарушение всасывания кальция в тонком кишечнике, гипокальциемию, что может привести к гиперпродукции ПТГ. В лечении рахита применяют витамин D, препараты кальция и фосфора, адекватное пребывание на солнце и ультрафиолетовое облучение, а также устранение патологии печени и почек. Гипервитаминоз D ведёт к деминерализации костей, переломам, повышению концентраций кальция и фосфора в крови, кальцификации мягких тканей, а также к образованию камней в почках и мочевыводящих путях. Суточная потребность в витамине D для взрослых составляет 400 МЕ, для беременных и кормящих - до 1000 МЕ, для детей - 500-1000 МЕ в зависимости от возраста.

Понравилась статья? Поделитесь с друзьями!