Мочевая кислота конечный продукт азотистого обмена у. Откуда берется мочевая кислота? Мочевая кислота понижена. Что это может значить

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na + и К +) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H +).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О 2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО 2 .

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К + и Na + . (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из NH 3 и CO 2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –NH 3 и аспартат) и одного атома углерода (из СО 2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления NH 3 , возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

Азотистый обмен

совокупность химических превращений, реакций синтеза и распада азотистых соединений в организме; составная часть обмена веществ и энергии. Понятие « » включает в себя (совокупность химических превращений в организме белков и продуктов их метаболизма), а также пептидов, аминокислот (Аминокислоты), нуклеиновых кислот (Нуклеиновые кислоты), нуклеотидов, азотистых оснований, аминосахаров (см. Углеводы), азотсодержащих липидов (Липиды), витаминов (Витамины), гормонов (Гормоны) и других соединений, содержащих .

Организм животных и человека усвояемый азот получает с пищей, в которой основным источником азотистых соединений являются животного и растительного происхождения. Главным фактором поддержания азотистого равновесия - состояния А. о., при котором количество вводимого и выводимого азота одинаково, - служит адекватное поступление белка с пищей. В СССР суточная белка в питании взрослого человека принята равной 100 г , или 16 г азота белка, при расходе энергии 2500 ккал . Азотистый баланс (разность между количеством азота, который попадает в с пищей, и количеством азота, выводимого из организма с мочой, калом, потом) является показателем интенсивности А. о. в организме. или недостаточное по азоту приводят к отрицательному азотистому балансу, или азотистому дефициту, при котором количество азота, выводимого из организма, превышает количество азота, поступающего в организм с пищей. Положительный , при котором вводимое с пищей количество азота превышает количество азота, выводимое из организма, наблюдается в период роста организма, при процессах регенерации тканей и т.д. Состояние А. о. в значительной степени зависит качества пищевого белка, которое, в свою очередь, определяется его аминокислотным составом и прежде всего наличием незаменимых аминокислот.

Принято считать, что у человека и позвоночных животных А. о. начинается с переваривания азотистых соединений пищи в желудочно-кишечном тракте. В желудке происходит белков при участии пищеварительных протеолитических ферментов Трипсин а и гастриксина (см. Протеолиз) с образованием полипептидов, олигопептидов и отдельных аминокислот. Из желудка пищевая масса поступает в двенадцатиперстную кишку и нижележащие отделы тонкой кишки, где подвергаются дальнейшему расщеплению, катализируемому ферментами сока поджелудочной железы трипсином, химотрипсином и карбоксипептидазой и ферментами кишечного сока аминопептидазами и дипептидазами (см. Ферменты ). Наряду с пептидами. в тонкой кишке расщепляются сложные белки (например, нуклеопротеины) и . Существенный вклад в расщепление азотсодержащих биополимеров вносит и кишечника. Олигопептиды, нуклеотиды, нуклеозиды и др. всасываются в тонкой кишке, поступают в и с ней разносятся по всему организму. тканей организма в процессе постоянного обновления также подвергаются протеолизу под действием тканевых протсаз (пептидаз и катепсинов), а продукты распада тканевых белков попадают в кровь. могут быть использованы для нового синтеза белков и других соединений (пуриновых и пиримидиновых оснований, нуклеотидов, порфиринов и т.д.), для получения энергии (например, посредством в цикл трикарбоновых кислот) или могут быть подвергнуты дальнейшей деградации с образованием конечных продуктов А. о., подлежащих выведению из организма.

Аминокислоты, поступающие в составе белков пищи, используются для синтеза белков органов и тканей организма. Они участвуют также в образовании многих других важных биологических соединений: пуриновых нуклеотидов ( , глицин, аспарагиновая кислота) и пиримидиновых нуклеотидов (глутамин, аспарагиновая кислота), серотонина (), меланина (фенилалпнин, ), гистамина (), адреналина, норадреналина, тирамина (тирозин), полиаминов ( , метионин), холина (метионин), порфиринов (глицин), креатина (глицин, аргинин, метионин), коферментов, сахаров и полисахаридов, липидов и т.д. Важнейшей для организма химической реакцией, в которой участвуют практически все аминокислоты, является , заключающееся в обратимом ферментативном переносе α-аминогруппы аминокислот на α-углеродный атом кетокислот или альдегидов. является принципиальной реакцией биосинтеза заменимых аминокислот в организме. ферментов, катализирующих реакции трансаминирования, - аминотрансфераз (Аминотрансферазы) - имеет большое клинико-диагностическое значение.

Деградация аминокислот может протекать по нескольким различным путям. Большинство аминокислот способно подвергаться декарбоксилированию при участии ферментов декарбоксилаз с образованием первичных аминов, которые затем могут окисляться в реакциях, катализируемых моноаминоксидазой или диаминоксидазой. При окислении биогенных аминов (гистамина, серотонина, тирамина, γ-аминомасляной кислоты) оксидазами образуются альдегиды, подвергающиеся дальнейшим превращениям, и Аммиак , основным путем дальнейшего метаболизма которого является образование мочевины.

Другим принципиальным путем деградации аминокислот является окислительное с образованием аммиака и кетокислот. Прямое дезаминирование L-аминокислот в организме животных и человека протекает крайне медленно, за исключением глутаминовой кислоты, которая интенсивно дезаминируется при участии специфического фермента глутаматдегидрогеназы. Предварительное трансаминирование почти всех α-аминокислот и дальнейшее дезаминирование образовавшейся глутаминовой кислоты на α-кетоглутаровую кислоту и является основным механизмом дезаминирования природных аминокислот.

Продуктом разных путей деградации аминокислот является аммиак, который может образовываться и в результате метаболизма других азотсодержащих соединений (например, при дезаминировании аденина, входящего в состав никотинамидадениндинуклеотида - ). Основным путем связывания и нейтрализации токсичного аммиака у уреотелических животных ( , у которых конечным продуктом А. о, является ) служит так называемый мочевины (синоним: орнитиновый цикл, цикл Кребса - Гензелейта), протекающий в печени. Он представляет собой циклическую последовательность ферментативных реакций, в результате которой из молекулы аммиака или амидного азота глутамина, аминогруппы аспарагановой кислоты и диоксида углерода осуществляется мочевины. При ежедневном потреблении 100 г белка суточное выведение мочевины из организма составляет около 30 г . У человека и высших животных существует еще один путь нейтрализации аммиака - синтез амидов дикарбоновых кислот аспарагана и глутамина из соответствующих аминокислот. У урикотелических животных (рептилии, птицы) конечным продуктом А. о. является .

В результате расщепления нуклеиновых кислот и нуклеопротеинов в желудочно-кишечном тракте образуются нуклеотиды и нуклеозиды. Олиго- и моно-нуклеотиды при участии различных ферментов (эстераз, нуклеотидаз, нуклеозидаз, фосфорилаз) превращаются затем в свободные пуриновые и .

Дальнейший путь деградации пуриновых оснований аденина и гуанина состоит в их гидролитическом дезаминировании под влиянием ферментов аденазы и гуаназы с образованием соответственно гипоксантина (6-оксипурина) и ксантина (2,6-диоксипурина), которые затем превращаются в мочевую кислоту в реакциях, катализируемых ксантиноксидазой. - один из конечных продуктов А. о. и конечный продукт обмена пуринов у человека - выводится из организма с мочой. У большинства млекопитающих имеется уриказа, который катализирует превращение мочевой кислоты в экскретируемый аллантоин.

Деградация пиримидиновых оснований (урацила, тимина) состоит в их восстановлении с образованием дигидропроизводных и последующем гидролизе, в результате которого из урацила образуется β-уреидопропионовая кислота, а из нее - аммиак, диоксид углерода и β-аланин, а из тимина - β-аминоизомасляная кислота, диоксид углерода и аммиак. Диоксид углерода и аммиак могут далее включаться в мочевину через цикл мочевины, а β-аланин участвует в синтезе важнейших биологически активных соединений - гистидинсодержащих дипептидов карнозина (β-аланил-L-гистидина) и анзерина (β-аланил-N-метил-L-гистидина), обнаруживаемых в составе экстрактивных веществ скелетных мышц, а также в синтезе пантотеновой кислоты и кофермента А.

Т.о., разнообразные превращения важнейших азотистых соединений организма связаны между собой в единый обмен. Сложный процесс А. о. регулируется на молекулярном, клеточном и тканевом уровнях. Регуляция А. о. в организме направлена на приспособление интенсивности А. о. к изменяющимся условиям окружающей и внутренней среды и осуществляется нервной системой как непосредственно, так и путем воздействия на .

У здоровых взрослых людей содержание азотистых соединений в органах, тканях, биологических жидкостях находится на относительно постоянном уровне. Избыток азота, поступившего с пищей, выводится с мочой и калом, а при недостатке азота в пище нужды организма в нем могут покрываться за счет использования азотистых соединений тканей тела. При этом состав мочи (Моча) изменяется в зависимости от особенностей А. о. и состояния азотистого баланса. В норме при неизменном режиме питания и относительно стабильных условиях окружающей среды из организма выделяется постоянное количество конечных продуктов А. о., а развитие патологических состояний приводит к его резкому изменению. Значительные изменения экскреции азотистых соединений с мочой, в первую очередь экскреции мочевины, могут наблюдаться и при отсутствии патологии в случае существенного изменения режима питания (например, при изменении количества потребляемого белка), причем остаточного азота (см. Азот остаточный) в крови меняется незначительно.

При исследовании А. о. необходимо учитывать количественный и качественный состав принимаемой пищи, количественный и качественный состав азотистых соединений, выделяемых с мочой и калом и содержащихся в крови. Для исследования А. о. применяют азотистые вещества, меченные радионуклидами азота, фосфора, углерода, серы, водорода, кислорода, и наблюдают за миграцией метки и включением ее в состав конечных продуктов А. о. Широко используют меченые аминокислоты, например 15 N-глицин, которые вводят в организм с пищей или непосредственно в кровь. Значительная часть меченого азота глицина пищи выводится в составе мочевины с мочой, а другая часть метки попадает в тканевые белки и выводится из организма крайне медленно. Проведение исследования А. о. необходимо для диагностики многих патологических состояний и контроля за эффективностью лечения, а также при разработке рациональных схем питания, в т.ч. лечебного (см. Питание лечебное).

Патологию А. о. (вплоть до очень значительной) вызывает . Ее причиной может стать общее , продолжительный дефицит белка или незаменимых аминокислот в рационе, недостаток углеводов и жиров, обеспечивающих энергией процессы биосинтеза белка в организме. может быть обусловлена преобладанием процессов распада белков их синтезом не только в результате алиментарного дефицита белка и других важнейших пищевых веществ, но и при тяжелой мышечной работе, травмах, воспалительных и дистрофических процессах, ишемии, инфекции, обширных ожогах, дефекте трофической функции нервной системы, недостаточности гормонов анаболического действия (гормона роста, половых гормонов, инсулина), избыточном синтезе или избыточном поступлении извне стероидных гормонов и т.п. Нарушение усвоения белка при патологии желудочно-кишечного тракта (ускоренная пищи из желудка, гипо- и анацидные состояния, закупорка выводного протока поджелудочной железы, ослабление секреторной функции и усиление моторики тонкой кишки при энтеритах и энтероколитах, нарушение процесса всасывания в тонкой кишке и др.) также может приводить к белковой недостаточности. Белковая недостаточность ведет к дискоординации А. о. и характеризуется резко выраженным отрицательным азотистым балансом.

Известны случаи нарушения синтеза определенных белков (см. Иммунопатология , Ферментопатии), а также генетически обусловленного синтеза аномальных белков, например при гемоглобинопатиях (Гемоглобинопатии), миеломной болезни (см. Парапротеинемические гемобластозы) и др.

Патология А. о., заключающаяся в нарушении обмена аминокислот, часто связана с аномалиями процесса трансаминирования: уменьшением активности аминотрансфераз при гипо- или авитаминозах В 6 , нарушением синтеза этих ферментов, недостатком кетокислот для трансаминирования в связи с угнетением цикла трикарбоновых кислот при гипоксии и сахарном диабете и т.д. Снижение интенсивности трансаминирования приводит к угнетению дезаминирования глутаминовой кислоты, а оно, в свою очередь, - к повышению доли азота аминокислот в составе остаточного азота крови (гипераминоацидемии), общей гиперазотемии и аминоацидурии. , аминоацидурия и общая характерны для многих видов патологии А. о. При обширных поражениях печени и других состояниях, связанных с массивным распадом белка в организме, нарушаются процессы дезаминирования аминокислот и образования мочевины таким образом, что возрастают концентрация остаточного азота и содержание в нем азота аминокислот на фоне снижения относительного содержания в остаточном азоте азота мочевины (так называемая продукционная азотемия). Продукционная азотемия, как правило, сопровождается выведением избытка аминокислот с мочой, поскольку даже в случае нормального функционирования почек фильтрация аминокислот в почечных клубочках происходит интенсивнее, чем их в канальцах. Заболевания почек, мочевых путей, нарушение почечного кровообращения приводят к развитию ретенционной азотемии, сопровождающейся нарастанием концентрации остаточного азота в крови за счет повышения содержания в крови мочевины (см. Почечная недостаточность). Обширные , тяжелые , инфекции, трубчатых костей, спинного и головного мозга, болезнь Иценко - Кушинга и многие другие тяжелые заболевания сопровождаются аминоацидурией. Она характерна и для патологических состояний, протекающих с нарушением процессов реабсорбции в почечных канальцах: болезни Вильсона - Коновалова (см. Гепатоцеребральная дистрофия), нефронофтизе Фанкони (см. Рахитоподобные болезни) и др. Эти болезни относятся к многочисленным генетически обусловленным нарушениям А. о. Избирательное нарушение реабсорбции цистина и с генерализованным нарушением обмена цистина на фоне общей аминоацидурии сопровождает так называемый . При этом заболевании кристаллы цистина откладываются в клетках ретикулоэндотелиальной системы. Наследственное Фенилкетонурия характеризуется нарушением превращения фенилаланина в тирозин в результате генетически обусловленной недостаточности фермента - 4-гидроксилазы, что вызывает накопление в крови и моче непревращенного фенилаланина и продуктов его обмена - фенилпировиноградной и фенилуксусной кислот. Нарушение превращений этих соединений характерно и для вирусного гепатита.

Библиогр.: Березов Т.Т. и Коровкин Б.Ф. Биологическая химия, с. 431, М., 1982; Вельтищев Ю.Е. и др. веществ у детей, с. 53, М., 1983; Дудел Дж. и др. человека, . с англ., т. 1-4, М., 1985; Зилва Дж.Ф. и Пэннелл П.Р. Клиническая химия в диагностике и лечении, пер. с англ., с. 298, 398, М., 1988; Р.М. и Рой К.С. Ранняя болезней обмена веществ, пер. с англ., с. 211, М., 1986; Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова, с. 222, М., 1987; Ленинджер А. Основы биохимии, пер. с англ., т. 2, М., 1985; Мазурин А.В. и Воронцов И.М. детских болезней, с. 322, М., 1985; Руководство по педиатрии, под. ред. У.Е. Бермана и В.К. Вогана, пер. с англ., кн. 2, с. 337, VI., 1987; Страйер Л. , пер. с англ., т. 2, с. 233, М., 1985.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг . - азотистый обмен, совокупность химических превращений азотсодержащих соединений в организме. Включает обмен белков, нуклеиновых кислот, продуктов их распада (пептидов, аминокислот, нуклеотидов), содержащих азот липидов, витаминов, гормонов… …

Азотистый обмен - – совокупность пластических, энергетичес ких превращений белков, аминокислот, др. азотсодержащих ве ществ (амидов, пептидов, метаболитов белковых соединений в организме животных); включает: расщепление белков корма с по мощью ферментов,… … Словарь терминов по физиологии сельскохозяйственных животных

Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий (англ.) Азотистый обмен почвы это круговорот в почве азота, который присутствует там не только в виде простого вещества… … Википедия - жировой обмен, совокупность процессов превращения нейтральных жиров (триглицеридов) в организме человека и животных. Ж. о. состоит из следующих этапов: расщепление поступивших в организм с кормом жиров и их всасывание в желудочно кишечном тракте; … Ветеринарный энциклопедический словарь

БЕЛКОВЫЙ ОБМЕН - см. Азотистый обмен … Ветеринарный энциклопедический словарь

Совокупность превращений белков (См. Белки) и продуктов их распада аминокислот в организмах. Б. о. существенная часть обмена веществ (См. Обмен веществ). Поскольку обмен аминокислот тесно связан с обменом других азотистых соединений, Б. о … Большая советская энциклопедия

Государственное образовательное учреждение

Читинская государственная медицинская академия

Л.П. Никитина, А.Ц. Гомбоева, Н.С. Кузнецова

Биохимия азотистый обмен в норме и при патологии

Под редакцией проф. Б.С. Хышиктуева

Л.П. Никитина

А.Ц. Гомбоева

Н.С. Кузнецова

Данное пособие предназначено для студентов медицинских вузов. В нем достаточно лаконично, доступным языком излагаются сведения о различных азотсодержащих соединениях, в первую очередь, об аминокислотах, нуклеотидах и их биополимерах – белках, нуклеиновых кислотах.

Список сокращений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Глава 1. Классификация и общность ролей азотсодержащих соединений. .

Глава 2. Метаболизм аминокислот. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1. Гидролитическая стадия катаболизма полипептидов. . . . . . . . . .

2.2. Судьба аминокислот в клетке. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1. Варианты неспецифических преобразований. . . . . . . . . . . . . . .

2.2.1.1. Реакции декарбоксилирования. . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1.2. Лишение аминокислоты аминогруппы. . . . . . . . . . . . . . . . . .

2.2.1.3. Особенности метаболизма циклических аминокислот. . . . .

2.2.1.4. Судьба продуктов распада аминокислот. . . . . . . . . . . . . . . . .

2.3. Анаболизм аминокислот. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4. Особенности обмена отдельных аминокислот. . . . . . . . . . . . . . . .

Тесты к главам 1, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Глава 3. Метаболизм нуклеотидов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1. Классификация и номенклатура нуклеотидов. . . . . . . . . . . . . . . .

3.2. Особенности строения, биологическая роль нуклеиновых соединений. . . . .

3.2.1. Функции мононуклеотидов. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.2. Значение динуклеотидов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3. Полинуклеотиды. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3.1. Виды РНК. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3.2. Варианты ДНК. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3.3. Физико-химические и биологические свойства сложных нуклеотидов

3.3. Катаболическая фаза обмена нуклеиновых структур. . . . . . . . . .

3.3.1. Распад нуклеопротеинов в ЖКТ и тканях. . . . . . . . . . . . . . . . .

3.3.2. Специфические пути преобразованийнуклеозидов. . . . . . . . .

3.3.2.1. Конечный продукт обмена пуринов – мочевая кислота. . .

3.3.2.2. Схема разрушений пиримидиновых колец. . . . . . . . . . . . . .

3.4. Пути синтеза мононуклеотидов. . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.1. Генез пуриновых нуклеотидов. . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.2. Образование пиримидиновых циклов. . . . . . . . . . . . . . . . . . . .

3.4.3. Подготовка мононуклеотидов к полимеризации. . . . . . . . . . . .

3.5. Патология обмена пуриновых соединений. . . . . . . . . . . . . . . . . . .

Тесты к главе 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Глава 4. Синтез азотсодержащих биополимеров. . . . . . . . . . . . . . . . . . . . . . .

4.1. Общие принципы реакций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2. Репликация ДНК. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3. Транскрипция РНК. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4. Генерирование полинуклеотидов. . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5. Регуляция биосинтеза азотсодержащих биополимеров. . . . . . . . .

4.6. Причины нарушений генеза нуклеиновых кислот и белков. . . . .

4.7. Принципы профилактики и терапии наследственных болезней. .

Тесты к главе 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ответы на тесты. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Приложение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Словарь генетических терминов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Список сокращений

АДФ – аденозинтрифосфат

АлАТ – аланинаминотрансфераза

АМФ – аденозинмонофосфат

АО – антиоксидант

АРЗ – антирадикальная защита

АсАТ – аспартатаминотрансфераза

АТФ – аденозинтрифосфат

ВЖК – высшая жирная кислота

ГАМК – гамма–аминомасляная кислота

ГГФРТ – гипоксантингуанинфосфорибозилтрансфераза

ГДФ – гуанозиндифосфат

ГМФ – гуанозинмонофосфат

ГНГ – глюконеогенез

ГФ – глицеролфосфатид(ы)

ГЧЭ – гормончувствительный элемент

гя–РНК – гетерогенная ядерная рибонуклеиновая кислота

ДГАФ –дигидроксиацетонфосфат

ДОФА – ди(гидр)оксифенилаланин

ЖКТ – желудочно-кишечный тракт

ИМФ – инозинмонофосфат

и–РНК – информационная рибонуклеиновая кислота

КоА – коэнзим ацилирования

НАД + – никотинамидадениндинуклеотид

НАД + Ф – никотинамидадениндинуклеотидфосфат

НТФ – нуклеозидтрифосфат

ОА – оксалоацетат

ОМФ – оритидинмонофосфат

ПВК – пировиноградная кислота

ПФП – пентозофосфатный путь

РНДФ – рибонуклеозиддифосфат

РМНФ – рибонуклеозидмонофосфат

РНК – рибонуклеиновая кислота

р–РНК – рибосомальная рибонуклеиновая кислота

РНТФ – рибонуклеозидтрифосфат

СТГ – соматотропный гормон

ТГФК – тетрагидрофолиевая кислота

ТДФ – тиаминдифосфат

ТМФ – тимидинмонофосфат

т–РНК – транспортная рибонуклеиновая кислота

УМФ – уридинмонофосфат

УТФ – уридинтрифосфат

ФАД – флавинадениндинуклеотид

ФАФС – фосфоаденозинфосфосульфат

ФМН – флавинмононуклеотид

ФРПФ – фосфорибозилпирофосфат

ц–АМФ – циклический аденозинмонофосфат

ЦДФ – цитидиндифосфат

ЦМФ – цитидинмонофосфат

ЦТК – цикл трикарбоновых кислот

ЭТЦ – электроно-транспортная цепь

H – гистон

SAM – S-аденозилметионин

Введение

Судьба находящихся в клетках веществ имеет следующие альтернативы: основная часть молекул используется как строительный, рецепторный, каталитический, регуляторный материал; другая же, распадаясь, служит энергоисточником для жизнедеятельности. Основными биоэлементами органических соединений служат C, H, O, N, S, P и чтобы легче было обеспечивать выполнение, точнее разделение вышеперечисленных функций, природа предложила следующий вариант. Вещество, состоящее лишь из атомов С, Н, О – хороший энергоисточник, из-за наличия электроотрицательного О содержит непрочные полярные связи, что облегчает дегидрирование, а позднее обеспечивает транспорт Н + и в ЭТЦ, окислительное фосфорилирование.

Включение атомов азота, способных за счет неподеленной электронной пары принимать протоны, т.е. обладать свойствами основания, приводит к качественному изменению выполняемых функций. Аминосодержащие молекулы организм не способен использовать в качестве источников энергии, они служат для других целей.

Мочевая кислота -- бесцветные кристаллы, плохо растворимы в воде, этаноле, диэтиловом эфире, растворимы в растворах щелочей, горячей серной кислоте и глицерине.

Мочевая кислота была открыта Карлом Шееле (1776) в составе мочевых камней и названа им каменной кислотой -- acide lithique, затем она была найдена им в моче. Название мочевой кислоты дано Фуркруа, её элементарный состав установлен Либихом.

Является двухосновной кислотой (pK1 = 5.75, pK2 = 10.3), образует кислые и средние соли -- ураты.

В водных растворах мочевая кислота существует в двух формах: лактамной (7,9-дигидро-1H-пурин-2,6,8(3H)-трион) и лактимной (2,6,8-тригидроксипурин) с преобладанием лактамной:

Легко алкилируется сначала по положению N-9, затем по N-3 и N-1, под действием POCl3 образует 2,6,8-трихлорпурин.

Азотной кислотой мочевая кислота окисляется до аллоксана, под действием перманганата калия в нейтральной и щелочной среде либо перекиси водорода из мочевой кислоты образуются сначала аллантоин, затем гидантоин и парабановая кислота.

Первым мочевую кислоту удалось синтезировать Горбачёвскому в 1882 году при нагревании гликоколя (амидоуксусной кислоты) с мочевиной до 200--230 °С.

NH2-CH2-COOH + 3CO(NH2)2 = C5H4N4O3+ 3NH3 + 2H2O

Однако такая реакция протекает весьма сложно, и выход продукта ничтожен. Синтез мочевой кислоты возможен при взаимодействии хлоруксусной и трихлормолочной кислот с мочевиной. Наиболее ясным по механизму является синтез Беренда и Роозена (1888 г.), при котором изодиалуровая кислота конденсируется с мочевиной. Мочевую кислоту можно выделить из гуано, где её содержится до 25 %. Для этого гуано необходимо нагреть с серной кислотой (1 ч), затем разбавить водой (12-15 ч), отфильтровать, растворить в слабом растворе едкого калия, отфильтровать, осадить соляной кислотой.

Метод синтеза заключается в конденсации мочевины с цианоуксусным эфиром и дальнейшей изомеризации продукта в урамил (аминобарбитуровую кислоту), дальнейшей конденсации урамила с изоцианатами, изотиоцианатами или цианатом калия.

У человека и приматов -- конечный продукт обмена пуринов образующийся в результате ферментативного окисления ксантина под действием ксантиноксидазы; у остальных млекопитающих мочевая кислота превращается в аллантоин. Небольшие количества мочевой кислоты содержатся в тканях (мозг, печень, кровь), а также в моче и поте млекопитающих и человека. При некоторых нарушениях обмена веществ происходит накопление мочевой кислоты и её кислых солей (уратов) в организме (камни в почках и мочевом пузыре, подагрические отложения, гиперурикемия). У птиц, ряда пресмыкающихся и большинства наземных насекомых мочевая кислота -- конечный продукт не только пуринового, но и белкового обмена. Система биосинтеза мочевой кислоты (а не мочевины, как у большинства позвоночных) в качестве механизма связывания в организме более токсичного продукта азотистого обмена -- аммиака -- развилась у этих животных в связи с характерным для них ограниченным водным балансом (мочевая кислота выводится из организма с минимальным количеством воды или даже в твёрдом виде). Высохшие экскременты птиц (гуано) содержат до 25 % мочевой кислоты. Обнаружена она и в ряде растений. Повышенное содержание мочевой кислоты в организме (крови) человека -- гиперурикемия. При гиперурикемии возможны точечные (похожи на укусы комара) проявления аллергии. Отложения кристаллов урата натрия (соль мочевой кислоты) в суставах называется подагрой.

Мочевая кислота -- исходный продукт для промышленного синтеза кофеина. Синтез мурексида.

Мочевая кислота - это конечный продукт метаболизма пуринов, дальше пурины не распадаются.

Пурины необходимы организму для синтеза нуклеиновых кислот - ДНК и РНК, энергетических молекул АТФ и коферментов.

Источники мочевой кислоты:

  • -- из пуринов пищи
  • -- из распавшихся клеток организма - в результате естественной старости или заболевания
  • -- мочевую кислоту могут синтезировать практически все клетки человеческого тела

Каждый день с продуктами питания (печень, мясо, рыба рис, горох) человек потребляет пурины. В клетках печени и слизистой оболочки кишечника присутствует фермент - ксантиноксидаза, превращающий пурины в мочевую кислоту. Не смотря на то, что мочевая кислота является конечным продуктом обмена, ее нельзя назвать «лишней» в организме. Она необходима для защиты клеток от кислых радикалов, поскольку умеет их связывать.

Общий «запас» мочевой кислоты в организме - 1 грамм, каждый день выделяется 1,5 грамма, из которых 40% пищевого происхождения.

Выведение мочевой кислоты на 75-80% обеспечивают почки, оставшиеся 20-25% -- желудочно-кишечный тракт, где ее частично потребляют кишечные бактерии.

Соли мочевой кислоты называются уратами, являя собой союз мочевой кислоты с натрием (90%) или калием (10%). Мочевая кислота мало растворима в воде, а организм на 60% состоит из воды.

Ураты выпадают в осадок при закислении среды и снижении температуры. Именно поэтому главными болевыми точками при подагре -- болезни высокого уровня мочевой кислоты -- являются отдаленные суставы (большой палец ноги), «косточки» на стопах, уши, локти. Начало болей провоцируется охлаждением.

Повышение кислотности внутренней среды организма бывает и у спортсменов и при сахаром диабете при лактатацидозе, что диктует необходимость контроля мочевой кислоты.

Уровень мочевой кислоты определяют в крови и моче. В поту ее концентрация совсем ничтожна и анализировать общедоступными методиками ее невозможно.

Усиленное образование мочевой кислоты непосредственно в почках бывает при злоупотреблении алкоголем и в печени - как результат обмена некоторых сахаров.

Мочевая кислота в крови - урикемия, а в моче - урикозурия. Повышение мочевой кислоты в крови - гиперурикемия, снижение - гипоурикемия.

По уровню мочевой кислоты в крови диагноз подагры не ставят, нужны симптомы и изменения на рентген-снимках. Если мочевой кислоты в крови больше нормы, а симптомов нет - ставится диагноз «Безсимптомная гиперурикемия». Но, без анализа мочевой кислоты в крови диагноз подагры нельзя считать полностью правомочным.

Нормы мочевой кислоты в крови (в мкмоль/л)

новорожденные -140-340

дети до 15 лет -- 140-340

мужчины до 65 лет -- 220-420

женщины до 65 лет -- 40-340

после 65 лет - до 500

Выделительная система взрослых амфибий представлена парой туловищных почек - мезонефросов, которые располагаются по бокам крестцового отдела позвоночного столба, но, в отличие от рыб, они не имеют лентовидной формы, а овальные и весьма компактны. Мочеточником является вольфов проток (у самцов он одновременно выполняет функцию семяпровода), который впадает в клоаку. У высших наземных форм в клоаку открывается обширный мочевой пузырь, куда из клоаки поступает моча и временно накапливается. Когда пузырь переполняется, он опорожняет свое содержимое все в ту же клоаку, и оттуда моча выводится наружу.

Почки амфибий удаляют из крови продукты обмена и поддерживают водно-солевой баланс (равновесие). Количество нефронов в почке зависит от того, насколько тесно связано животное с водой. У преимущественно водных хвостатых амфибий в обеих почках находится около 400 - 500 нефронов, а у бесхвостых - около 2000. Это объясняют тем, что водные амфибии часть продуктов обмена выделяют через жабры и покровы тела в окружающую воду. Окончательным продуктом азотистого обмена у амфибий является мочевина.

Через почки удаляется излишняя вода, которая поступает в тело животного через кожу, при этом из мочи обратно всасываются (ре- абсорбируются) соли, поэтому большая часть ионов - до 99% - возвращается в кровь.

У водных личинок амфибий основным продуктом азотистого обмена является не мочевина, а аммиак, который в виде раствора выводится через жабры и кожу.

Половая система. Мужская половая система представлена двумя округлыми семенниками, расположенными вблизи почек (374) и подвешенными на брыжейке. Для земноводных характерно наличие жировых тел различной формы, расположенных над семенниками. Эти тела служат источником питательных веществ для сперматогенеза, и поэтому осенью жировые тела имеют значительно более крупные размеры, чем весной, когда образуется много гамет.

Посредством множества тонких семявыносящих канальцев, которые отходят от семенника, половые продукты проходят через переднюю часть почки и попадают в вольфов проток, который у амфибий (так же как и у хрящевых рыб) совмещает функции мочеточника и семяпровода. Вольфовы протоки впадают в клоаку, но незадолго до этого каждый из них образует небольшое расширение - семенной пузырек, в котором сперма временно накапливается. Подобно семенникам и жировым телам, семенные пузырьки уменьшаются вне периода размножения. Собственных половых протоков в мужской половой системе амфибий нет, у большинства видов также отсутствуют копулятивные органы.

Женская половая система образована двумя яичниками, подвешенными на брыжейке, над которыми лежат жировые тела (375). Размер яичников существенно меняется в зависимости от сезона, значительно увеличиваясь к периоду размножения. Весной яичники особенно велики, через тонкую стенку просвечивают крупные яйца, богатые желтком.

Созревшие яйца выходят из яичника через разрыв фолликулярной оболочки и оказываются в полости тела, откуда затем поступают в воронку яйцевода. У самок амфибий яйцеводом служит парный мюллеров проток, который одним концом (воронкой) открывается в полость тела, а другим - в клоаку. В период размножения яйцеводы сильно удлиняются, стенки их утолщаются.

Для многих амфибий характерно брачное поведение, часто сопровождающееся голосовыми сигналами (самцы некоторых лягушек могут при этом издавать чрезвычайно громкие звуки). Это необходимо для стимуляции одновременного выхода половых продуктов у половых партнеров. Оплодотворение может быть внутренним или наружным.

Развитие подавляющего большинства амфибий проходит в воде, некоторые виды приспособились вынашивать оплодотворенные яйца в своем теле. Яйца содержат относительно немного желтка (мезолецитальные яйца), поэтому происходит радиальное дробление, т. е. борозды дробления в процессе деления блас- томеров проходят через все яйцо.

Для амфибий характерно развитие с метаморфозом, при этом из яйца выходит личинка, которая по своей организации значительно ближе к рыбам, чем к взрослым амфибиям. Она имеет характерную рыбообразную форму, поэтому перемещается с помощью продольных изгибов тела. Органами дыхания сначала служат наружные жабры, представляющие собой выросты кожи, позже прорываются жаберные щели, открывая внутренние жабры, а наружные жабры после этого редуцируются. Конечности на ранних этапах отсутствуют. У хвостатых амфибий весь личиночный период функционируют наружные жабры, а внутренние не развиваются.

В ходе развития личинки амфибий у нее перестраиваются внутренние системы: дыхательная, кровеносная, выделительная и пищеварительная . Постепенно развиваются конечности. Метаморфоз завершается формированием миниатюрной копии взрослой особи, у бесхвостых при этом редуцируется хвост.

Для амбистом характерна неотения, т. е. у них размножаются личинки, которые длительное время принимали за самостоятельный вид, поэтому у них есть свое название - аксолотль. Такая личинка имеет более крупные, чем взрослая особь, размеры. Другой интересной группой амфибий являются протеи, постоянно живущие в воде, которые в течение всей жизни сохраняют наружные жабры, т. е. сохраняют признаки личинки.

Понравилась статья? Поделитесь с друзьями!