Галактоза химические свойства. Галактоза - это: определение, свойства, функции и роль в организме. Особенности назначения прикорма при галактоземии

... Галакто́за (от греческого корня γάλακτ-, «молоко») - один из простых сахаров, моносахарид из группы гексоз. Отличается от глюкозы пространственным расположением водородной и гидроксильной групп у 4-го углеродного атома. Содержится в животных и растительных организмах, в том числе в некоторых микроорганизмах. Входит в состав дисахаридов - лактозы и лактулозы. При окислении образует галактоновую, галактуроновую и слизевую кислоты. L-галактоза входит в состав полисахаридов красных водорослей. D-галактоза широко распространена в природе, входит в состав олигосахаридов (мелибиозы, рафинозы, стахиозы), некоторых гликозидов, растительных и бактериальных полисахаридов (камедей, слизей, галактанов, пектиновых веществ, гемицеллюлоз), в организме животных и человека - в состав лактозы, группоспецифических полисахаридов, цереброзидов, кератосульфата и др. В животных и растительных тканях D-галактоза может включаться в гликолиз при участии уридиндифосфат-В-глюкозо-4-эпимеразы, превращаясь в глюкозо-1-фосфат, который и усваивается. У человека наследственное отсутствие этого фермента приводит к неспособности утилизировать D-галактозу из лактозы и вызывает тяжёлое заболевание - галактоземию... [Wikipedia ]

... Галактоза (от греческого слова gala, galaktos - молоко) представляет собой моносахарид - C-4 эпимер глюкозы, с идентичной молекулярной формулой, но с отличной от глюкозы структурной формулой. Несмотря на большое сходство молекул глюкозы и галактозы, превращение последней в глюкозу требует нескольких эволюционно- консервативных ферментативных реакций, которые протекают в цитоплазме клетки и известны под названием пути Лелуара метаболизма галактозы.

Галактоза имеет важнейшее значение для роста и развития детского организма, так как является компонентом пищи грудного ребенка, входя в состав молока. Этот моносахарид не только является значимым источником энергии для клетки, но и служит необходимым пластическим материалом для образования гликопротеидов, гликолипидов и других комплексных соединений, используемых организмом для формирования клеточных мембран, нервной ткани, нервных окончаний, процессов миелинизации нейронов и др.

Основным источником галактозы у человека является пища. Большое количество потребляемых в течение дня пищевых продуктов содержат лактозу, из которой в кишечнике в результате гидролиза образуется галактоза; многие продукты питания содержат галактозу в чистом виде. У человека галактоза может образовываться эндогенным путем, подавляющее ее количество синтезируется в процессе ферментативных реакций между уридиндифосфатглюкозой (УДФ-глюкозой) и УДФ-галактозой, а также в процессе обмена гликопротеинов и гликолипидов.

Нарушение метаболизма галактозы, наблюдаемое при галактоземии, неизбежно приводит к расстройству функционирования многих органов и систем организма...

Рис.1. Кольман Я., Рем К.-Г. НАГЛЯДНАЯ БИОХИМИЯ: Пер. с нем. - М.: Мир, 2000 - 469 с.

... Галактоза образуется при гидролизе в кишечнике дисахарида лактозы (молочного сахара). В печени она легко превращается в глюкозу. Способность печени осуществлять это превращение может быть использована в качестве функциональной пробы-теста на толерантность к галактозе... [humbio.ru ]

... Большая часть поглощенной галактозы поступает в печень, где она в основном превращается в глюкозу, которая затем может быть либо преобразована в гликоген или использоваться для получения энергии...

... В норме, лактоза проходит через желудок, а затем в тонком кишечнике подвергается гидролизу через метаболический путь Лелуара, с участием β-галактозидазы, локализованной на плазматических мембранахэнтероцитов. Образовавшаяся глюкоза и галактоза впоследствии всасываются. Галактоза поступает в организм в виде моносахарида...

А.А. Костеневич, Л.И. Сапунова. БАКТЕРИАЛЬНЫЕ β-ГАЛАКТОЗИДАЗЫ: БИОХИМИЧЕСКОЕ И ГЕНЕТИЧЕСКОЕ РАЗНООБРАЗИЕ. Институт микробиологии НАН Беларуси, Минск, Республика Беларусь. Труды БГУ 2013, том 8, часть 1, 52 УДК 577.15+572.22

... Метаболизм галактозы [собственно, как и фруктозы] осуществляется превращением ее в глюкозу, преимущественно в печени. Печень обладает свойством синтезировать глюкозу из различных сахаров, например фруктозы и галактозы, или из других продуктов промежуточного метаболизма (лактата, аланина и пр.)...

... Помимо поступления галактозы из продуктов питания, человеческий организм способен синтезировать значительное кол-во de novo галактозы из глюкозы, а также из пула галактозы, которая входит в состав гликопротеинов и мукополисахаридов. Этот процесс важен для поддержания галактозы и ее метаболитов, необходимых для синтеза галактозосодержащих гликопротеинов. На галактозо-ограниченной диете, эндогенное производство галактозы колеблется от 1,1 до 1,3 гр/сут.

Галактоза может связываться с глюкозой, для синтеза лактозы (в грудном молоке), с липидами, для синтеза гликолипидов, или с белками, для синтеза гликопротеинов.

... Исследования на людях показали, что галактоза и глюкоза имеют общий транспортный механизм для всасывания в кишечнике. Этот транспортный механизм имеет большее сродство с глюкозой, чем с галактозой, и это может объяснить, почему поглощение галактозы ингибируется глюкозой. Когда галактоза абсорбируется вместе с глюкозой, концентрации галактозы в сыворотке крови значительно ниже, чем при потреблении такого же количества галактозы без глюкозы. Поглощение галактозы также может быть снижено с помощью агонистов лептина и b3-адренергического рецептора...

... Стоит иметь ввиду, что не все кисломолочные бактерии способны ферментировать галактозу. Соответственно это оказывает влияние и на концентрацию галактозы в конечном молочном продукте. Незавершенная ферментация галактозы дает избыточное количество галактозы в продукте, что ассоциируется с низким качеством молочного продукта.

Также, необходимо учитывать, что не все виды лактозы полностью перевариваются в тонком кишечнике, некоторые из них ферментируются кишечной микробиотой, а у людей, страдающих лактозной непереносимостью, организм не вырабатывает β-галактозидазу. Вследствие этого лактоза, в неизменном виде попадающая в толстый кишечник, сбраживается анаэробной микрофлорой, что вызывает образование органических кислот, газов и осмотический стресс, что в итоге может существенно снижать кол-во галактозы поступающей в организм...

Содкржание галактозы в различных продуктах

Рис.2. Gross KC et.al. J Inherit Metab Dis. 1991;14(2):253-8.

Рис.3. Kim HO et.al. Free galactose content in selected fresh fruits and vegetables and soy beverages. J Agric Food Chem. 2007 Oct 3;55(20):8133-7. Epub 2007 Sep 11.

Содержание галактозы в различных молочных продуктах варьируется в кол-ве от 7,12 до 12,22 мг/100 гр. В ферментированном молоке количество колеблется от 51,86 до 84,91 мг/100 гр. Концентрация глюкозы колеблется в пределах тех же значений. Количество галактозы в ферментированном молоке, и йогурте обычно выше, чем в других молочных продуктах (Filmjölk, Onaka and A-fil).

Влияние температуры хранения на содержание галактозы в молоке

В молоке хранящимся при температуре 4°C, конечное содержание галактозы составляет около 7,74 мг/100 гр. Количество галактозы увеличивается в течение первой недели хранения, а затем наблюдается стойкая тенденция к снижению концентрации.

Рис.4, 5, 6. Agnes Abrahamson. Galactose in dairy products. Faculty of Natural Resources and Agricultural Sciences Department of Food Science. Publikation/Sveriges lantbruksuniversitet, Institutionen för livsmedelsvetenskap, no 401 Uppsala, 2015.

Van Calcar SC et.al.

Содержание галактозы в животных маслах

Portnoi PA et.al. The lactose and galactose content of milk fats and suitability for galactosaemia. Mol Genet Metab Rep. 2015 Oct 22;5:42-43. doi: 10.1016/j.ymgmr.2015.10.001. eCollection 2015 Dec.

Примечание к таблице выше:

  1. Butter oil - топленое масло.
  2. Ghee - Гхи (разновидность очищенного топлёного масла, которое широко используется в Южной Азии).
  3. Butter - сливочное масло.

Van Calcar SC et.al. Galactose content of legumes, caseinates, and some hard cheeses: implications for diet treatment of classic galactosemia. J Agric Food Chem. 2014 Feb 12;62(6):1397-402. doi: 10.1021/jf404995a. Epub 2014 Feb 3.

Галактоземия

... Галактоземия – наследственное нарушение обмена углеводов, при котором в организме накапливается избыток галактозы и ее метаболитов (галактозо-1-фосфата и галактитола), что обусловливает клиническую картину заболевания и формирование отсроченных осложнений. Тип наследования галактоземии - аутосомно-рецессивный.

Галактоземия относится к наследственным болезням углеводного обмена и объединяет несколько генетически гетерогенных форм. В основе заболевания лежит недостаточность одного из трех ферментов, участвующих в метаболизме галактозы: галактозо-1-фосфатуридилтраснферазы (ГАЛТ), галактокиназы (ГАЛК) и уридин-дифосфат (УДФ)-галактозо-4-эпимиразы (ГАЛЭ). Известны три гена, мутации в которых могут приводить к развитию галактоземии.

Патогенетические механизмы галактоземии до сих пор полностью не изучены. В результате недостаточности любого из трех ферментов – ГАЛТ, ГАЛК или ГАЛЭ – в крови повышается концентрация галактозы. При дефиците активности ферментов ГАЛТ и ГАЛЭ, помимо избытка галактозы, в организме больного накапливается также избыточное количество галактозо-1-фосфата, что на сегодняшний день считается основным патогенетическим фактором, обусловливающим большинство клинических проявлений галактоземии и формирование отсроченных осложнений. Избыток галактозы в организме может метаболизироваться другими биохимическими путями: в присутствии НАДФ·Н (или НАД·Н) она может превращаться в галактитол. Накопление галактитола в крови и тканях и повышение его экскреции с мочой наблюдается при всех формах галактоземии; в хрусталике глаза избыток галактитола способствует формированию катаракты. Имеются сведения о том, что высокое содержание галактитола в тканях мозга способствует набуханию нервных клеток и формированию псевдоопухоли мозга у отдельных больных. Патологические процессы при галактоземии обусловлены не только токсическим действием указанных продуктов, но и их тормозящим влиянием на активность других ферментов, участвующих в углеводном обмене (фосфоглюкомутазы, глюкозо-6-фосфатдегидрогеназы), следствием чего является гипогликемический синдром...

Эпидемиология

... В среднем частота галактоземии составляет 1 случай на 40 000 - 60 000 новорожденных, реже данное заболевание встречается в некоторых странах Азии. Основываясь на результатах программы скрининга новорожденных, частота классической галактоземии составляет 1:48 000. В Ирландии она определяется как 1:16 476. Если в качестве диагностических критериев используются результаты определения активности фермента галактоза- 1-фосфатауридилтрансфераза (ГАЛТ) эритроцитов (менее 5% контрольной активности) и концентрациягалактоза-1-фосфата эритроцитов (более 2 мг/дл), то оценка частоты галактоземии увеличивается и достигает 1:10 000. Частота клинического варианта галактоземии составляет 1:20 000 и оценивается по наличию генотипа Ser135Leu/Ser135Leu.
По данным массового скрининга новорожденных в России, частота галактоземии составляет 1:16 242, в 2012-м - 1: 20149. Результаты неонатального скрининга за период 2006-2008 гг. позволили предварительно оценить частоту галактоземии среди новорожденных детей Краснодарского края: 1:19340, классический вариант - 1:58021, вариант Дуарте 1: 29010. Частота галактоземии в некоторых регионах и федеральных округах Российской Федерации представлена в таблицах 1, 2.

Жалобы и анамез

... На фоне вскармливания молоком у новорожденного появляется рвота, диарея, мышечная гипотония, сонливость, вялость. Останавливается прибавка в массе тела, наблюдается вялое сосание, отказ от груди матери, появляются и нарастают признаки поражения печени, часто сопровождающиеся гипогликемией, желтухой и гепатоспленомегалией, нередко отмечается кровоточивость из мест инъекций. Наиболее тяжелым проявлением галактоземии у новорожденных является сепсис, который имеет фатальное течение и чаще всего обусловлен грамположительными микроорганизмами, в 90% случаев - Escherichia coli. Заболевание обычно манифестирует в первые дни - недели жизни, быстро прогрессирует и в отсутствии лечения носит жизнеугрожающий характер. Недостаточная прибавка массы тела, синдром угнетения, реже возбуждения ЦНС, иктеричность (реже бледность) кожных покровов и слизистых, гепатоспленомегалия, увеличение объема живота (асцит), диспепсические расстройства (рвота, диарея), геморрагический синдром, катаракта...

Допустимое суточное кол-во галактозы для пациентов с галактоземией

В отличие от пациентов с непереносимостью лактозы, у пациентов с нарушениями метаболизма галактозы необходимо наблюдать индивидуальную реакцию организма и как на лактозосодержащие, и так и на галактозосодержащие продукты питания.

Существует также количественная разница в кол-ве размерах лактозы, которое переносится пациентами с непереносимостью лактозы и у пациентов с врожденными нарушениями метаболизма галактозы: сокращение поступления лактозы может быть достаточным для лиц с непереносимостью лактозы, но исключение только лактозосодержащих продуктов из диеты, у пациентов с врожденными нарушениями метаболизма галактозы, может быть не достаточно.

Молочные продукты, в которых содержание лактозы было уменьшено путем ферментативного гидролиза, содержат эквивалентные количества галактозы и глюкозы, которые находилось в продукте до его ферментации, и поэтому, не подходит для пациентов с галактоземией. Источниками галактозы главным образом являются молоко и его содержащие лактозу (коровье молоко содержит от 4,5 до 5,5 гр лактозы/100 мл или 2.3 гр галактозы/100 мл). Многие фрукты и овощи и кисломолочные продукты содержат некоторое количество свободной галактозы (йогурт 900 до 1600 мг, сыр чеддер 236 до 440 мг, черника 26 ± 8,0 мг, дыня 27 ± 2,0 мг, ананас 19 ± 3,0 мг/100 г сырого веса). Потребление галактозы здоровых людей в промышленно развитых странах колеблется между 3 и 14 г в день (Forges et al., 2006; Gropper et al., 2000). … Было предложено, что в рацион больных с тяжелой галактоземией вводить только продукты с содержанием галактозы ≤5 мг/100 гр, а для пациентов с менее тяжелыми формами галактоземии, ограничить поступление галактозы с пищей, в пределах от 5 до 20 мг/100 гр. (Gropper et al., 2000).

Оценка допустимого суточного кол-ва галактозы для пациентов с тяжелой формой галактоземией основана на основе хорошо контролируемых наблюдений у пациентов европейских центров по лечению наследственных нарушений обмена веществ (APS, 1997):

  • для новорожденных от 50 до 200 мг/сут,
  • для детей дошкольного возраста от 150 до 200 мг/сут,
  • для детей школьного возраста от 200 до 300 мг/сут,
  • для подростков от 250 до 400 мг/сут,
  • для взрослых от 300 до 500 мг/сут

Исходя из этих рекомендаций и предполагая, что среднее рекомендуемое суточное потребление калорий у указанных возрастных групп, находится в переделах 600, 1100, 1500, 2000 и 2500 ккал в сутки, соответственно, то оптимальное допустимое кол-во галактозы для таких людей будет составлять:

  • для новорожденных (при 600 ккал/сут) – около 8 мг (16 мг лактозы) галактозы/100 ккал;
  • для детей дошкольного возраста (при 1100 ккал/сут) - около 14 мг (28 мг лактозы) галактозы/100 ккал;
  • для детей школьного возраста (при 1500 ккал/сут) – около 13 мг (26 мг лактозы) галактозы/100 ккал;
  • для подростков (при 2000 ккал/сут) - около 13 мг (26 мг лактозы) галактозы/100 ккал;
  • для взрослых (при 2500 ккал/сут) - около 12 мг (24 мг лактозы) галактозы/100 ккал.

Моносахариды – это простейшие углеводы. Они не подвергаются гидролизу – не расщепляются водой на более простые углеводы.


Важнейшими из моносахаридов являются глюкоза и фруктоза . Так же хорошо известен другой моносахарид – галактоза , являющаяся частью молочного сахара.


Моносахариды – твёрдые вещества, легко растворимые в воде, плохо – в спирте и совсем не растворимы в эфире.


Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладает сладким вкусом .


В свободном виде в природе встречается преимущественно глюкоза . Она же является структурной единицей многих полисахаридов .


Другие моносахариды в свободном состоянии встречаются редко и, в основном, известны как компоненты олиго- и полисахаридов .


Тривиальные названия моносахаридов обычно имеют окончание «-оза »: глюкоза , галактоза, фруктоза .

Химическое строение моносахаридов.

Моносахариды могут существовать в двух формах: открытой (оксоформе) и циклической :

В растворе эти изомерные формы находятся в динамическом равновесии.

Открытые формы моносахаридов.

Моносахариды являются гетерофунциональными соединениями . В их молекулах одновременно содержатся карбонильная (альдегидная или кетонная) и несколько гидроксильных групп (ОН ).


Другими словами, моносахариды представляют собой альдегидоспирты (глюкоза) или кетоноспирты (фруктоза).


Моносахариды , содержащие альдегидную группу называются альдозами , а содержащие кетонную – кетозами .


Строение альдоз и кетоз в общем виде можно представить следующим образом:


В зависимости от длины углеродной цепи (от 3 до 10 атомов углерода) моносахариды делятся на триозы, тетрозы, пентозы, гексозы, гептозы и т.д. Наиболее распространены пентозы и гексозы .


Структурные формулы глюкозы и фруктозы в их открытых формах выглядят так:


Так глюкоза является альдогексозой , т.е. содержит алдегидную функциональную группу и 6 атомов углерода.


А фруктоза является кетогексозой , т.е. содержит кетогруппу и 6 атомов углерода.

Циклические формы моносахаридов.

Моносахариды открытой формы могут образовывать циклы , т.е. замыкаться в кольца.


Рассмотрим это на примере глюкозы .

Напомним, что глюкоза является шестиатомным альдегидоспиртом (гексозой). В её молекуле одновременно присутствует альдегидная группа и несколько гидроксильных групп ОН (ОН - это функциональная группа спиртов).


При взаимодействии между собой альдегидной и одной из гидроксильных групп , принадлежащих одной и той же молекуле глюкозы , посленяя образует цикл , кольцо.


Атом водорода из гидроксильной группы пятого атома углерода переходит в альдегидную группу и соединяется там с кислородом. Вновь образованная гидроксильная группа (ОН ) называется гликозидной .


По своим свойствам она значительно отличается от спиртовых (гликозных) гидроксильных групп моносахаридов.


Атом кислорода из гидроксильной группы пятого атома углерода соединяется с углеродом альдегидной группы, в результате чего образуется кольцо:


Альфа- и бета-аномеры глюкозы различаются положением гликозидной группы ОН относительно углеродной цепи молекулы.


Мы рассмотрели возникновение шестичленного цикла. Но циклы, также могут быть пятичленными .


Это произойдёт в том случае, если углерод из альдегидной группы соединиться с кислородом гидроксильной группы при четвёртом атоме углерода , а не при пятом, как рассматривалось выше. Получится кольцо меньшего размера.


Шетичленные циклы называются пиранозными , пятичленные – фуранозными . Названия циклов происходят от названий родственных гетероциклических соединений – фурана и пирана .


В названиях циклических форм наряду с названием самого моносахарида указывается «окончание» – пираноза или фураноза , характеризующие размер цикла. Например: альфа-D-глюкофураноза, бета-D-глюкопираноза и т.д.


Циклические формы моносахаридов термодинамически более устойчивы в сравнении с открытыми формами, поэтому в природе они получили большее распространение.


(от др.-греч. γλυκύς - сладкий) (C 6 H 12 O 6 ) или виноградный сахар – важнейший из моносахаридов ; белые кристаллы сладкого вкуса, легко растворяется в воде.


Глюкозное звено входит в состав ряда дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал).


Содержится в соке винограда, во многих фруктах, а также в крови животных и человека.


Мышечная работа совершается, главным образом, за счёт энергии, выделяющейся при окислении глюкозы .


Является шестиатомным альдегидоспиртом:

Получается при гидролизе полисахаридов (крахмала и целюлозы ) под действием ферментов и минеральных кислот. В природе глюкоза образуется растениями в процессе фотосинтеза .


Или плодовый сахар С6Н12О6 моносахарид , спутник глюкозы во многих плодовых и ягодных соках.


Фруктроза в качестве моносахаридного звена входит в состав сахарозы и лактулозы.


Значительно слаще глюкозы. Смеси с ней входят в состав мёда.


По строению фруктоза представляет собой шестиатомный кетоноспирт:



В отличие от глюкозы и других альдоз, фруктоза неустойчива как в щелочных, так и кислых растворах; разлагается в условиях кислотного гидролиза полисахаридов или гликозидов.


- моносахарид , один из наиболее часто встречающихся в природе шестиатомных спиртов - гексоз.


Cуществует в ациклической и циклической формах.


Отличается от глюкозы пространственным расположением групп у 4-го атома углерода.

Хорошо растворима в воде, плохо в спирте.


В тканях растений галактоза входит в состав рафинозы, мелибиозы, стахиозы, а также в полисахариды - галактаны, пектиновые вещества, сапонины, различные камеди и слизи, гуммиарабик и др.


В организме животных и человека галактоза - составная часть лактозы (молочного сахара), галактогена, группоспецифических полисахаридов, цереброзидов и мукопротеидов.


Входит во многие бактериальные полисахариды и может сбраживаться так называемыми лактозными дрожжами. В животных и растительных тканях галактоза легко превращается в глюкозу , которая лучше усваивается, может превращаться в аскорбиновую и галактуроновую кислоты.

Углеводы входят в состав клеток и тканей всех растительных и животных организмов. Они имеют большое значение как источники энергии в метаболических процессах.

Углеводы служат основным ингредиентом пищи млекопитающих. Общеизвестный их представитель - глюкоза - содержится в расти- тельных соках, плодах, фруктах и особенно в винограде (отсюда ее название - виноградный сахар). Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций.

Углеводы образуются в растениях в процессе фотосинтеза из диоксида углерода и воды. Для человека основным источником угле- водов является растительная пища.

Углеводы делятся на моносахариды и полисахариды. Моносахариды не гидролизуются с образованием более простых углеводов. Способные к гидролизу полисахариды можно рассматривать как продукты поли- конденсации моносахаридов. Полисахариды являются высокомолекулярными соединениями, макромолекулы которых содержат сотни и тысячи моносахаридных остатков. Промежуточную группу между моно- и полисахаридами составляют олигосахариды (от греч. oligos - немного), имеющие относительно небольшую молекулярную массу.

Составная часть приведенных выше названий - сахариды - связана с употребляющимся до сих пор общим названием углеводов - сахара.

11.1. Моносахариды

11.1.1. Строение и стереоизомерия

Моносахариды, как правило, представляют собой твердые вещества, хорошо растворимые в воде, плохо - в спирте и нерастворимые в большинстве органических растворителей. Почти все моносахариды обладают сладким вкусом.

Моносахариды могут существовать как в открытой (оксоформе), так и в циклических формах. В растворе эти изомерные формы находятся в динамическом равновесии.

Открытые формы. Моносахариды (монозы) являются гетерофункциональными соединениями. В их молекулах одновременно содержатся карбонильная (альдегидная или кетонная) и несколько гидроксильных групп, т. е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. Они имеют неразветвленную углеродную цепь.

Моносахариды классифицируют с учетом природы карбонильной группы и длины углеродной цепи. Моносахариды, содержащие аль- дегидную группу, называют альдозами, а кетонную группу (обычно в положении 2) - кетозами (суффикс -оза применяют для названий моносахаридов: глюкоза, галактоза, фруктоза и т. д.). В общем виде строение альдоз и кетоз можно представить следующим образом.

В зависимости от длины углеродной цепи (3-10 атомов) моносахариды делят на триозы, тетрозы, пентозы, гексозы, гептозы и т. д. Наиболее распространены пентозы и гексозы.

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (2 4), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (2 3) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера (см. 7.1.2). Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом (см. 7.1.2).

Известно, что для обозначения стереохимического строения соединений с несколькими центрами хиральности универсальной является R,S-система (см. 7.1.2). Однако громоздкость получаемых при этом названий моносахаридов ограничивает ее практическое применение.

Большинство природных моносахаридов принадлежит к D-ряду. Из альдопентоз часто встречаются D-рибоза и D-ксилоза, а из кетопентоз - D-рибулоза и D-ксилулоза.

Общие названия кетоз образуются введением суффикса -ул в названия соответствующих альдоз: рибозе соответствует рибулоза, ксилозе - ксилулоза (из этого правила выпадает название «фруктоза», которое не имеет связи с названием соответствующей альдозы).

Как видно из приведенных выше формул, стереоизомерные d-альдогексозы, равно как d-альдопентозы и d-кетопентозы, явля- ются диастереомерами. Среди них есть такие, которые отличаются конфигурацией только одного центра хиральности. Диастереомеры, различающиеся конфигурацией только одного асимметрического атома углерода, называются эпимерами. Эпимеры - частный случай диастереомеров. Например, d-глюкоза и d-галактоза отличаются друг

от друга только конфигурацией атома С-4, т. е. являются эпимерами по С-4. Аналогично d-глюкоза и d-манноза - эпимеры по С-2, а d-рибоза и d-ксилоза - по С-3.

Каждой альдозе d-ряда соответствует энантиомер l-ряда с противоположной конфигурацией всех центров хиральности.

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп (см. 9.2.2), содержащихся в молекуле моносахарида.

Полуацетальную гидроксильную группу в химии углеводов называют гликозидной. По свойствам она значительно отличается от остальных (спиртовых) гидроксильных групп.

В результате циклизации образуются тер- модинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию (см. 7.2.1). Вследствие этого в пространстве оказы- ваются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т. е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация. Если у альдогексоз в реакцию вступит гидроксильная группа при С-5, то возникает полуацеталь с шестичленным пиранозным циклом. Аналогичный цикл у кетогексоз получается при участии в реакции гидроксильной группы при С-6.

В названиях циклических форм наряду с названием моносахарида указывают размер цикла словами пираноза или фураноза. Если в циклизации у альдогексоз участвует гидроксильная группа при С-4, а у кетогексоз - при С-5, то получаются полуацетали с пятичленным фуранозным циклом.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соот- ветствующих стереоизомера - α- и β-аномерами (рис. 11.1). Аномеры представляют собой частный случай эпимеров.

Различные конфигурации аномерного атома углерода возникают вследствие того, что альдегидная группа из-за поворота вокруг σ-связи С-1-С-2 атакуется нуклеофильным атомом кислорода фак- тически с разных сторон (см. рис. 11.1). В результате образуются полуацетали с противоположными конфигурациями аномерного центра.

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l -ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d -ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. 11.1. Образование α- и β-аномеров на примере d -глюкозы

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра (см. 7.1.2). Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН 2 ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гид- роксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

С целью упрощения в формулах Хеуорса часто не изображают символы атомов водорода и их связи с атомами углерода цикла. Если речь идет о смеси аномеров или стереоизомере с неизвестной конфигурацией аномерного центра, то положение гликозидной группы ОН обозначают волнистой линией.

d -ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

11.1.2. Цикло-оксо-таутомерия

В твердом состоянии моносахариды находятся в циклической форме. В зависимости от того, из какого растворителя была перекристаллизована d-глюкоза, она получается либо в виде a-d-глюкопиранозы (из спирта или воды), либо в виде β-d-глюкопиранозы (из пиридина). Они различаются величиной угла удельного вращения [a] D 20 , а именно +112? у a-аномера и +19? у β-аномера. У свежеприготовленного раствора

каждого аномера при стоянии наблюдается изменение удельного вращения до достижения постоянного, одинакового для того и другого раствора угла вращения +52,5?.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через про- межуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

В смеси таутомеров преобладают пиранозные формы. Оксоформа, а также таутомеры с фуранозными циклами содержатся в малых количествах. Важно, однако, не абсолютное содержание того или иного таутомера, а возможность их перехода друг в друга, что приводит к пополнению количества «нужной» формы по мере ее расходова-

ния в каком-либо процессе. Например, несмотря на незначительное содержание оксоформы, глюкоза вступает в реакции, характерные для альдегидной группы.

Аналогичные таутомерные превращения происходят в растворах со всеми моносахаридами и большинством известных олигосахаридов. Ниже приведена схема таутомерных превращений важнейшего представителя кетогексоз - d-фруктозы, содержащейся во фруктах, меде, а также входящей в состав сахарозы (см. 11.2.2).

11.1.3. Конформации

Наглядные формулы Хеуорса тем не менее не отражают реальной геометрии молекул моносахаридов, поскольку пяти- и шестичлен- ные циклы не являются плоскими. Так, шестичленный пиранозный цикл, подобно циклогексану, принимает наиболее выгодную конформацию кресла (см. 7.2.2). В распространенных моносахаридах объемная первичноспиртовая группа СН 2 ОН и большинство гидроксильных групп находятся в более выгодных экваториальных положениях.

Из двух аномеров d-глюкопиранозы в растворе преобладает β-аномер, у которого все заместители, включая полуацетальный гидроксил, расположены экваториально.

Высокой термодинамической устойчивостью d-глюкопирано- зы, обусловленной ее конформационным строением, объясняется наибольшее распространение d-глюкозы в природе среди моносахаридов.

Конформационное строение моносахаридов предопределяет пространственное расположение полисахаридных цепей, формируя их вторичную структуру.

11.1.4. Неклассические моносахариды

Неклассическими моносахаридами называют ряд соединений, имеющих общую структурную «архитектуру» с обычными, «класси- ческими» моносахаридами (альдозами и кетозами), но отличающихся либо видоизменением одной или нескольких функциональных групп, либо отсутствием некоторых из них. В таких соединениях часто отсутствует группа ОН. Их называют путем добавления к названию исходного моносахарида приставки дезокси- (означает отсутствие группы ОН) и названия «нового» заместителя.

Дезоксисахара. Самый распространенный из дезоксисахаров - 2-дезокси-D-рибоза - является структурным компонентом ДНК. В природных сердечных гликозидах (см. 15.3.5), применяемых в кардиологии, содержатся остатки дидезоксисахаров, например дигитоксозы (сердечные гликозиды наперстянки).

Аминосахара. Эти производные, содержащие вместо гидроксильной группы аминогруппу (обычно при С-2), обладают основными свойствами и образуют с кислотами кристаллические соли. Важнейшими представителями аминосахаров служат аналоги d-глю- козы и d-галактозы, для которых часто используют полутривиаль-

ные названия - d-глюкозамин и d-галактозамин соответственно. Аминогруппа в них может быть ацилирована остатками уксусной, иногда серной кислоты.

Альдиты. К альдитам, называемым также сахарными спиртами, относят многоатомные спирты, содержащие гидроксильную группу вместо оксогруппы =О. Каждой альдозе соответствует один альдит, в названии которого используют суффикс -ит вместо -озя, например d-маннит (от d-маннозы). Альдиты обладают более симметричной структурой, чем альдозы, поэтому среди них встречаются мезосоединения (внутренне симметричные), например ксилит.

Кислые сахара. Моносахариды, в которых вместо звена СН 2 ОН содержится группа СООН, имеют общее название уроновые кислоты. В их названиях используют сочетание -уроновяя кислотя вместо суффикса -озя соответствующей альдозы. Заметим, что нумерация цепи ведется от альдегидного атома углерода, а не от карбоксильного, чтобы сохранить структурное родство с исходным моносахаридом.

Уроновые кислоты являются компонентами растительных и бактериальных полисахаридов (см. 13.3.2).

КИСЛЫЕ САХАРА

Моносахариды, содержащие карбоксильную группу вместо альдегидной, относят к альдоновым кислотам. Если карбоксильные группы присутствуют на обоих концах углеродной цепи, то такие соединения имеют общее название альдаровые кислоты. В номенклатуре этих типов кислот применяют соответственно сочетания -оновяя кислотя и - яровяя кислотя.

Альдоновые и альдаровые кислоты не могут образовывать таутомерных циклических форм, так как лишены альдегидной группы. Альдаровые кислоты, как и альдиты, могут существовать в виде мезо-соединений (пример - галактаровая кислота).

Аскорбиновая кислота (витамин С). Этот, пожалуй, старейший и самый популярный витамин по структуре близок к моносахаридам и представляет собой γ-лактон кислоты (I). Аскорбиновая кислота

содержится во фруктах, особенно в цитрусовых, ягодах (шиповник, черная смородина), овощах, молоке. В больших масштабах произ- водится в промышленности из d-глюкозы.

Аскорбиновая кислота проявляет довольно сильные кислотные свойства (рК а 4,2) за счет одной из гидроксильных групп ендиольного фрагмента. При образовании солей γ-лактонное кольцо не размыкается.

Аскорбиновая кислота обладает сильными восстановительными свойствами. Образующаяся при ее окислении дегидроаскорбиновая кислота легко восстанавливается в аскорбиновую. Этот процесс обеспечивает ряд окислительно-восстановительных реакции в организме.

11.1.5. Химические свойства

Моносахариды - вещества с богатой реакционной способностью. В их молекулах имеются следующие наиболее важные реакционные центры:

Полуацетальный гидроксил (выделен цветом);

Спиртовые гидроксильные группы (все остальные, кроме полуацетальной);

Карбонильная группа ациклической формы.

Гликозиды. К гликозидам относят производные циклических форм углеводов, в которых полуацетальная гидроксильная группа заменена группой OR. Неуглеводный компонент гликозида называют агликоном. Связь между аномерным центром (в альдозах это С-1, в кетозах - С-2) и группой OR называют гликозидной. Гликозиды являются ацеталями циклических форм альдоз или кетоз.

В зависимости от размера оксидного цикла гликозиды подразделяют на пиранозиды и фуранозиды. Гликозиды глюкозы называют глюкозидами, рибозы - рибозидами и т. п. В полном названии гликозидов последовательно указывают наименование радикала R, конфигурацию аномерного центра (α- или β-) и название углеводного остатка с заме- ной суффикса -оза на -озид (см. примеры в схеме реакции ниже).

Гликозиды образуются при взаимодействии моносахаридов со спиртами в условиях кислотного катализа; при этом в реакцию вступает только полуацетальная группа ОН.

Растворы гликозидов не мутаротируют.

Превращение моносахарида в гликозид - сложный процесс, протекающий через ряд последовательных реакций. В общих чертах он ана-

логичен получению ациклических ацеталей (см. 5.3). Однако вследствие обратимости реакции в растворе в равновесии могут находиться таутомерные формы исходного моносахарида и четыре изомерных гликозида (α- и β-аномеры фуранозидов и пиранозидов).

Как и все ацетали, гликозиды гидролизуются разбавленными кислотами, но проявляют устойчивость к гидролизу в слабощелочной среде. Гидролиз гликозидов приводит к соответствующим спиртам и моносахаридам и представляет собой реакцию, обратную их образованию. Ферментативный гидролиз гликозидов лежит в основе расщепления полисахаридов, осуществляемого в животных организмах.

Сложные эфиры. Моносахариды легко ацилируются ангидридами органических кислот, образуя сложные эфиры с участием всех гидроксильных групп. Например, при взаимодействии с уксусным ангидридом получаются ацетильные производные моносахаридов. Сложные эфиры моносахаридов гидролизуются как в кислой, так и в щелочной средах.

Большое значение имеют эфиры неорганических кислот, в частности эфиры фосфорной кислоты - фосфаты. Они содержатся во всех растительных и животных организмах и представляют собой метаболически активные формы моносахаридов. Наиболее важную роль играют фосфаты d-глюкозы и d-фруктозы.

Эфиры серной кислоты - сульфаты - входят в состав полисахаридов соединительной ткани (см. 11.3.2).

Восстановление. При восстановлении моносахаридов (их альдегидной или кетонной группы) образуются альдиты.

Шестиатомные спирты - D -глюцит (сорбит) и D -маннит - получаются при восстановлении соответственно глюкозы и маннозы. Альдиты легко растворимы в воде, обладают сладким вкусом, некоторые из них (ксилит и сорбит) используются как заменители сахара для больных сахарным диабетом.

При восстановлении альдоз получается лишь один полиол, при восстановлении кетоз - смесь двух полиолов; например, из d -фруктозы образуются d -глюцит и d -маннит.

Окисление. Реакции окисления используют для обнаружения моносахаридов, в частности глюкозы, в биологических жидкостях (моча, кровь).

В молекуле моносахарида окислению может подвергаться любой атом углерода, но легче всего окисляется альдегидная группа альдоз в открытой форме.

Мягкими окислителями (бромная вода) можно окислить альдегидную группу в карбоксильную, не затрагивая других групп. При

этом образуются альдоновые кислоты. Так, при окислении d -глюкозы бромной водой получается d -глюконовая кислота. В медицине используется ее кальциевая соль - глюконат кальция.

Действие более сильных окислителей, таких, как азотная кислота, перманганат калия, и даже ионов Cu 2 + или Ag+ приводит к глубокому распаду моносахаридов с разрывом углерод-углеродных связей. Углеродная цепь сохраняется только в отдельных случаях, например при окислении d -глюкозы в d -глюкаровую кислоту или d -галактозы в галактаровую (слизевую) кислоту.

Получающаяся галактаровая кислота трудно растворима в воде и выпадает в осадок, что используется для обнаружения галактозы указанным методом.

Альдозы легко окисляются комплексными соединениями меди(11) и серебра - соответственно реактивами Фелинга и Толленса (см. также 5.5). Такие реакции возможны в связи с присутствием альдегидной (открытой) формы в таутомерной смеси.

Благодаря способности восстанавливать ионы Cu 2 + или Ag+ моносахариды и их производные, содержащие потенциальную альдегидную группу, называют восстанавливающими.

Гликозиды не проявляют восстановительной способности и не дают положительной пробы с этими реактивами. Однако кетозы способны восстанавливать катионы металлов, так как в щелочной среде они изомеризуются в альдозы.

Прямое окисление звена СН 2 ОН моносахаридов в карбоксильную группу невозможно из-за присутствия более склонной к окислению альдегидной группы, поэтому для превращения моносахарида в уроновую кислоту окислению подвергают моносахарид с защищенной альдегидной группой, например, в виде гликозида.

Образование гликозидов глюкуроновой кислоты - глюкуронидов - является примером биосинтетического процесса конъюгации, т. е. процесса связывания лекарственных средств или их метаболитов с биогенными веществами, а также с токсичными веществами с последующим выведением из организма с мочой.

11.2. Олигосахариды

Олигосахариды - углеводы, построенные из нескольких остатков моносахаридов (от 2 до 10), связанных между собой гликозидной связью.

Простейшими олигосахаридами являются дисахариды (биозы), которые состоят из остатков двух моносахаридов и представляют собой гликозиды (полные ацетали), в которых один из остатков выполняет роль агликона. С ацетальной природой связана способность дисахаридов гидролизоваться в кислой среде с образованием моносахаридов.

Существуют два типа связывания моносахаридных остатков:

За счет полуацетальной группы ОН одного моносахарида и любой спиртовой группы другого (в примере ниже - гидроксил при С-4); это группа восстанавливающих дисахаридов;

С участием полуацетальных групп ОН обоих моносахаридов; это группа невосстанавливающих дисахаридов.

11.2.1. Восстанавливающие дисахариды

В этих дисахаридах один из моносахаридных остатков участвует в образовании гликозидной связи за счет гидроксильной группы (чаще всего при С-4). В дисахариде имеется свободная полуацетальная гидроксильная группа, вследствие чего сохраняется способность к раскрытию цикла.

Восстановительные свойства таких дисахаридов и мутаротация их растворов обусловлены цикло-оксо-таутомерией.

Представителями восстанавливающих дисахаридов являются мальтоза, целлобиоза, лактоза.

Мальтоза. Этот дисахарид называют еще солодовым сахаром (от лат. maltum - солод). Он является основным продуктом расщепления крахмала под действием фермента β-амилазы, выделяемого слюнной железой, а также содержащегося в солоде (проросших, а затем высушенных и измельченных зернах хлебных злаков). Мальтоза имеет менее сладкий вкус, чем сахароза.

Мальтоза - дисахарид, в котором остатки двух молекул d-глюко- пиранозы связаны а(1^4)-гликозидной связью.

Аномерный атом углерода, участвующий в образовании этой связи, имеет а-конфигурацию, а аномерный атом с полуацетальной гидроксильной группой может иметь как α-, так и β-конфигурацию (соответственно а- и β-мальтоза).

В систематическом названии дисахарида «первая» молекула приобретает суффикс -озил, а у «второй» сохраняется суффикс -оза. Кроме того, в полном названии указывают конфигурации обоих аномерных атомов углерода.

Целлобиоза. Этот дисахарид образуется при неполном гидролизе полисахарида целлюлозы.

Целлобиоза - дисахарид, в котором остатки двух молекул d-глю- копиранозы связаны β(1-4)-гликозидной связью.

Отличие целлобиозы от мальтозы состоит в том, что аномерный атом углерода, участвующий в образовании гликозидной связи, имеет β-конфигурацию.

Мальтоза расщепляется ферментом α-глюкозидазой, который не активен по отношению к целлобиозе. Целлобиоза способна расщепляться ферментом β-глюкозидазой, но этот фермент в человеческом организме отсутствует, поэтому целлобиоза и соответствующий полисахарид целлюлоза не могут перерабатываться в организме человека. Жвачные животные могут питаться целлюлозой (клетчаткой) трав, поскольку находящиеся в их желудочно-кишечном тракте бактерии обладают β-глюкозидазой.

Конфигурационное различие между мальтозой и целлобиозой влечет за собой и конформационное различие: α-гликозидная связь в мальтозе расположена аксиально, а β-гликозидная связь в целло- биозе - экваториально. Конформационное состояние дисахаридов служит первопричиной линейного строения целлюлозы, в состав которой входит целлобиоза, и клубкообразного строения амилозы (крахмал), построенной из мальтозных единиц.

Лактоза содержится в молоке (4-5%) и получается из молочной сыворотки после отделения творога (отсюда и ее название «молочный сахар»).

Лактоза - дисахарид, в котором остатки d-галактопиранозы и d-глюкопиранозы связаны Р(1-4)-гликозидной связью.

Участвующий в образовании этой связи аномерный атом углерода d-галактопиранозы имеет β-конфигурацию. Аномерный атом глюкопиранозного фрагмента может иметь как α-, так и β-конфигурацию (соответственно α- и β-лактоза).

11.2.2. Невосстанавливающие дисахариды

Важнейшим из невосстанавливающих дисахаридов является сахароза. Ее источником служат сахарный тростник, сахарная свекла (до 28% от сухого вещества), соки растений и плодов.

Сахароза - дисахарид, в котором остатки a-d-глюкопиранозы и β-d-фруктофуранозы связаны гликозидными связями за счет полуацетальных гидроксильных групп каждого моносахарида.


Поскольку в молекуле сахарозы отсутствуют полуацетальные гидроксильные группы, она неспособна к цикло-оксо-таутомерии. Растворы сахарозы не мутаротируют.

11.2.3. Химические свойства

По химической сути олигосахариды являются гликозидами, а восстанавливающие олигосахариды обладают еще и признаками моносахаридов, так как содержат потенциальную альдегидную группу (в открытой форме) и полуацетальный гидроксил. Этим и определяется их химическое поведение. Они вступают во многие реакции, свойственные моносахаридам: образуют сложные эфиры, способны окисляться и восстанавливаться под действием тех же реагентов.

Наиболее характерной реакцией дисахаридов является кислотный гидролиз, приводящий к расщеплению гликозидной связи с образованием моносахаридов (во всех таутомерных формах). В общих чертах эта реакция аналогична гидролизу алкилгликозидов (см. 11.1.5).

11.3. Полисахариды

Полисахариды составляют основную массу органической материи в биосфере Земли. Они выполняют три важные биологические функции, выступая в роли структурных компонентов клеток и тканей, энергетического резерва и защитных веществ.

Полисахариды (гликаны) - высокомолекулярные углеводы. По химической природе они являются полигликозидами (полиацеталями).

По принципу строения полисахариды не отличаются от восстанавливающих олигосахаридов (см. 11.2). Каждое звено моносахарида связано гликозидными связями с предыдущим и последующим зве- ньями. При этом для связи с последующим звеном предоставляется полуацетальная гидроксильная группа, а с предыдущим - спиртовая группа. Различие заключается лишь в количестве моносахаридных остатков: полисахариды могут содержать их сотни и даже тысячи.

В полисахаридах растительного происхождения наиболее часто встречаются (1-4)-гликозидные связи, а в полисахаридах животно- го и бактериального происхождения имеются связи и других типов. На одном конце полимерной цепи находится остаток восстанавливающего моносахарида. Поскольку его доля во всей макромолекуле очень мала, полисахариды практически не проявляют восстановительных свойств.

Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и устойчивость в щелочной средах. Полный гидролиз приводит к образованию моносахаридов или их производных, неполный - к ряду промежуточных олигосахаридов, в том числе и дисахаридов.

Полисахариды имеют большую молекулярную массу. Им присущ типичный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул. Наряду с первичной структурой, т. е. с определенной последовательностью мономерных остатков, важную роль играет вторичная структура, определяемая пространственным расположением макромолекулярной цепи.

Полисахаридные цепи могут быть разветвленными или неразветвленными (линейными).

Полисахариды делят на группы:

Гомополисахаридов, состоящих из остатков одного моносахарида;

Гетерополисахаридов, состоящих из остатков разных моносахаридов.

К гомополисахаридам относятся многие полисахариды растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения.

Гетерополисахариды, к числу которых относятся многие животные и бактериальные полисахариды, изучены меньше, но играют важную биологическую роль. Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы.

11.3.1. Гомополисахариды

Крахмал. Этот полисахарид состоит из полимеров двух типов, построенных из d-глюкопиранозы: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях в процессе фотосинтеза и «запасается» в клубнях, корнях, семенах.

Крахмал - белое аморфное вещество. В холодной воде нерастворим, в горячей набухает и некоторая часть его постепенно растворяется. При быстром нагревании крахмала из-за содержащейся в нем влаги (10-20%) происходит гидролитическое расщепление макромолекулярной цепи на более мелкие осколки и образуется смесь полисахаридов, называемых декстринами. Декстрины лучше растворяются в воде, чем крахмал.

Такой процесс расщепления крахмала, или декстринизация, осуществляется при хлебопечении. Крахмал муки, превращенный в де- кстрины, легче усваивается вследствие большей растворимости.

Амилоза - полисахарид, в котором остатки d-глюкопиранозы связаны а(1-4)-гликозидными связями, т. е. дисахаридным фрагмен- том амилозы является мальтоза.

Цепь амилозы неразветвленная, включает до тысячи глюкозных остатков, молекулярная масса до 160 тыс.

По данным рентгеноструктурного анализа, макромолекула амилозы свернута в спираль (рис. 11.2). На каждый виток спирали приходится шесть моносахаридных звеньев. Во внутренний канал спирали могут входить соответствующие по размеру молекулы, например молекулы иода, образуя комплексы, называемые соединениями включения. Комплекс амилозы с иодом имеет синий цвет. Это используется в аналитических целях для открытия как крахмала, так и иода (иодкрахмальная проба).

Рис. 11.2. Спиралевидная структура амилозы (вид вдоль оси спирали)

Амилопектин в отличие от амилозы имеет разветвленное строение (рис. 11.3). Его молекулярная масса достигает 1-6 млн.

Рис. 11.3. Разветвленная макромолекула амилопектина (цветные кружки - места ответвления боковых цепей)

Амилопектин - разветвленный полисахарид, в цепях которого остатки D-глюкопиранозы связаны а(1^4)-гликозидными связями, а в точках разветвления - а(1^6)-связями. Между точками разветвления располагаются 20-25 глюкозных остатков.

Гидролиз крахмала в желудочно-кишечном тракте происходит под действием ферментов, расщепляющих а(1-4)- и а(1-6)-гликозидные связи. Конечными продуктами гидролиза являются глюкоза и мальтоза.

Гликоген. В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала. По строению он подобен амилопектину, но имеет еще большее разветвление цепей. Обычно между точками разветвления содержатся 10-12, иногда даже 6 глюкозных звеньев. Условно можно сказать, что разветвленность макромолекулы гликогена вдвое больше, чем амилопектина. Сильное разветвление способствует выполнению гликогеном энергетической функции, так как только при множестве концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы.

Молекулярная масса гликогена необычайно велика и достигает 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остается внутри клетки, пока не возникнет потребность в энергии.

Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы. Это используют в анализе тканей на содержание гликогена по количеству образовавшейся глюкозы.

Аналогично гликогену в животных организмах такую же роль резервного полисахарида в растениях выполняет амилопектин, име- ющий менее разветвленное строение. Это связано с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрого притока энергии, как иногда необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза. Этот полисахарид, называемый также клетчаткой, является наиболее распространенным растительным полисахаридом. Целлюлоза обладает большой механической прочностью и выполняет функцию опорного материала растений. Древесина содержит 50-70% целлюлозы; хлопок представляет собой почти чистую целлюлозу. Целлюлоза является важным сырьем для ряда отраслей промышленности (целлюлозно-бумажной, текстильной и т. п.).

Целлюлоза - линейный полисахарид, в котором остатки d-глюко- пиранозы связаны Р(1-4)-гликозидными связями. Дисахаридный фрагмент целлюлозы представляет собой целлобиозу.

Макромолекулярная цепь не имеет разветвлений, в ней содержится 2,5-12 тыс. глюкозных остатков, что соответствует молеку- лярной массе от 400 тыс. до 1-2 млн.

β-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюллозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.

Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений. Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но необходима для нормального питания как балластное вещество.

Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шелк), нитраты (взрывчатые вещества, коллоксилин) и другие (вискозное волокно, целлофан).

11.3.2. Гетерополисахариды

Полисахариды соединительной ткани. Среди полисахаридов соединительной ткани наиболее полно изучены хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (стекловидное тело глаза, пуповина, хрящи, суставная жидкость), гепарин (печень). По структуре эти полисахариды имеют некоторые общие черты: их неразветвленные цепи состоят из дисахаридных остатков, в состав которых входят уроновая кислота (d-глюкуроновая, d-галактуроно- вая, l-идуроновая - эпимер d-глюкуроновой кислоты по С-5) и аминосахар (N-ацетилглюкозамин, N-ацетилгалактозамин). Некоторые из них содержат остатки серной кислоты.

Полисахариды соединительной ткани иногда называют кислыми мукополисахаридами (от лат. mucus - слизь), поскольку они содержат карбоксильные группы и сульфогруппы.

Хондроитинсульфаты. Они состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных β(1-4)-гликозидными связями.

N-Ацетилхондрозин построен из остатков D -глюкуроновой кислоты и N-ацетил -D -галактозамина, связанных β(1-3)-гликозидной связью.

Как свидетельствует название, эти полисахариды являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся в положении 4 или 6. Соответственно различают хон- дроитин-4-сульфат и хондроитин-6-сульфат. Молекулярная масса хондроитинсульфатов составляет 10-60 тыс.

Гиалуроновая кислота. Этот полисахарид построен из дисахаридных остатков, соединенных β(1-4)-гликозидными связями.

Дисахаридный фрагмент состоит из остатков D -глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных β (1-3)-гликозидной связью.

Гепарин. В гепарине в состав повторяющихся дисахаридных еди- ниц входят остатки d-глюкозамина и одной из уроновых кислот - d-глюкуроновой или l-идуроновой. В количественном отношении преобладает l-идуроновая кислота. Внутри дисахаридного фрагмента осуществляется α(1-4)-гликозидная связь, а между дисахаридными фрагментами - α(1-4)-связь, если фрагмент оканчивается l-идуро- новой кислотой, и β(1-4)-связь, если d-глюкуроновой кислотой.

Аминогруппа у большинства остатков глюкозамина сульфатирована, а у некоторых из них ацетилирована. Кроме того, сульфатные группы содержатся у ряда остатков l-идуроновой кислоты (в положе- нии 2), а также глюкозамина (в положении 6). Остатки d-глюкуроно- вой кислоты не сульфатированы. В среднем на один дисахаридный фрагмент приходятся 2,5-3 сульфатные группы. Молекулярная масса гепарина равна 16-20 тыс.

Гепарин препятствует свертыванию крови, т. е. проявляет антикоагулянтные свойства.

Многие гетерополисахариды, включая рассмотренные выше, содержатся не в свободном, а в связанном виде с полипептидными цепями. Такие высокомолекулярные соединения относят к смешан- ным биополимерам, для которых в настоящее время используется термин гликоконъюгаты.

Общая характеристика

С первзе снижается, однако все равно остается одной из основных.

Галактоза – один из главных источников энергии для организма. Она представляет собой простой молочный сахар. Необходима для полноценного функционирования нашего организма, а также используется в медицине и микробиологии.

Галактоза – это моносахарид, который очень часто встречается в природе. Она близка по составу к глюкозе, лишь немного отличается от нее своим атомным строением.

Галактоза встречается в некоторых микроорганизмах, практически во всех продуктах растительного и животного происхождения. Наибольшее ее содержание найдено в лактозе.

Выделяют два вида галактозы: L и D. Первая, в виде доли полисахаридов, была найдена в красных водорослях. Вторая встречается значительно чаще, ее можно найти во многих организмах в составе разных веществ – гликозидов, олигосахаридов, в ряде полисахаридов бактериальной и растительной природы, пектиновых веществ, камедей. Окисляясь, галактоза создает галактуроновую и галактоновую кислоты.

Галактоза используется в медицине, как контрастное вещество для УЗИ, а также в микробиологии для определения вида микроорганизмов.

Полезные свойства галактозы и ее влияние на организм

Галактоза активно участвует в создании клеточных стенок, а также помогает тканям быть более эластичными. Она входит в состав липидов мозга, крови и соединительной ткани.

Незаменима галактоза и для мозга и нервной системы. Нормализованный уровень галактозы предотвращает развитие деменций, а также нервных расстройств. Снижается риск развития болезни Альцгеймера.

Также она благотворно влияет на работу органов желудочно-кишечного тракта.

Галактоза принимает участие в создании гемицеллюлозы, которая необходима для создания клеточных стенок.

Препятствует развитию некоторых заболеваний нервной системы.

Продукты богатые галактозой

Простой углевод галактоза в чистом виде в продуктах питания не встречается. Но, соединяясь с глюкозой, она образует дисахарид, лактозу, которая поступает в наш организм с молочными продуктами: молоком, сметаной, сыром, йогуртом, кефиром. В желудочно-кишечном тракте лактоза расщепляется на глюкозу и галактозу. Затем галактоза, попав в кровь, преобразуется в печени в глюкозу.

Суточная потребность в галактозе

Уровень галактозы должен оставаться на уровне 5 мг/дл в крови. Суточную норму галактозы вы легко получаете, если употребляете молочные продукты или сельдерей. Несмотря на то, что галактоза встречается в продуктах очень часто, в чистом виде в организмах или продуктах ее просто нет. То есть галактозу в продуктах стоит искать по наличию лактозы.

Потребность в галактозе возрастает:

  • у детей грудного возраста;
  • в период кормления грудью (галактоза – необходимый компонент для синтеза лактозы); при повышенной физической активности;
  • при повышенной умственной нагрузке;
  • при стрессе;
  • при постоянной переутомляемости.

Потребность в галактозе снижается:

  • в пожилом возрасте;
  • при аллергии на галактозу или молочные продукты;
  • при болезнях кишечника;
  • при воспалительных заболеваниях женских половых органов;
  • при сердечной недостаточности;
  • при нарушении усвоения – галактоземии.

Усваиваемость галактозы

Галактоза быстро усваивается организмом. Как моносахарид, галактоза представляет собой самый быстрый источник энергии.

Для того чтобы организм мог впитать галактозу, она попадает в печень и превращается в глюкозу. Как у любого углевода, уровень усвоения галактозы очень высок.

Нарушение усвоения галактозы называется галактоземией и является тяжелым заболеванием, которое передается по наследству. Суть галактоземии заключается в том, что галактоза не может превратиться в глюкозу из-за отсутствия фермента.

В результате галактоза скапливается в тканях организма и крови. Ее токсическое действие разрушает хрусталик в глазу, печень и центральную нервную систему. При несвоевременном лечении заболевание может иметь летальный исход, так как вызывает цирроз печени.

Галактоземия лечится в основном строгой диетой, при которой пациент вообще не употребляет продукты, в которых есть галактоза или лактоза.

Взаимодействие с другими элементами

Галактоза реагирует с глюкозой, создавая дисахарид, о котором вы наверняка много слышали – лактозу. Легко растворяется в воде.

Признаки нехватки галактозы в организме

Признаки недостатка галактозы похожи на недостаток углеводов – человек быстро и сильно устает, чувствует, что ему сложно сосредоточится. Он легко впадает в депрессию и не способен физически развиваться.

Галактоза, как и глюкоза – источник энергии для тела, поэтому ее уровень должен быть всегда в норме.

Признаки избытка галактозы в организме

  • нарушение работы нервной системы и гиперактивность;
  • нарушение работы печени;
  • разрушение глазного хрусталика.

Факторы, влияющие на содержание галактозы в организме

Галактоза поступает в организм вместе с пищей, а также образуется в кишечнике путем гидролиза из лактозы.

Главный фактор, влияющий на содержание галактозы – наличие специального фермента, который превращает галактозу в вещество (глюкозо-1-фосфат), способное усваиваться человеком. При отсутствии этого фермента начинается дисбаланс галактозы в организме, что приводит к развитию заболеваний.

Также очень важно регулярное потребление продуктов, содержащих галактозу. Для здорового человека недостаточное потребление соответствующих продуктов приводит к нарушениям развития, как физического, так и умственного.

Галактоза для красоты и здоровья

Галактоза очень важна для организма человека, как источник энергии. Она позволяет ему расти и развиваться, оставаться бодрым и энергичным.

Галактоза важна для физического развития тела, поэтому спортсмены активно потребляют продукты и препараты, содержащие это вещество.

Галактоза и целлюлит

Целлюлит - отложение Галактозы из-за неправильного питания в подкожных слоях, особенно у женщин, особенно на бёдрах. Галактоза - это продукт распада лактозы (молочного сахара). Попадая в желудок молоко под действием соляной кислоты в желудке, распадается на Глюкозу и Галактозу. Глюкоза - это основной источник энергии, она усваивается без остатков. А Галактоза вообще не усваивается человеческим организмом с того момента, как ребёнок отлучается от груди, т.е. ген, отвечающий за переработку и усвоение Галактозы, с отлучением от груди отключается. Галактоза нужна грудному ребёнку – как резерв дополнительной энергии (поскольку запасов энергии у грудничка ещё нет) и, в случае надобности, печень ребёнка, потребляющего только материнское молоко, переработает её в Глюкозу.

Особенности назначения прикорма при галактоземии

С 4-х месячного возраста рацион больного с галактоземи ей расширяют за счет фруктовых и ягодных соков (яблочный, грушевый, сливовый и др.), начиная с 5–10 капель, постепенно увеличивая объем до 30–50 мл в сутки, к концу года - до 100 мл.

С 4,5 месяцев вводят фруктовое пюре, количество которого увеличивают так же, как при введении сока. Первый прикорм в виде овощного пюре из натуральных овощей или плодоовощных консервов для детского питания без добавления молока (и не имеющих в составе бобовых) назначают с 5 месяцев.

В 5,5 месяцев вводят второй прикорм - безмолочные каши промышленного производства на основе кукуруз ной, рисовой или гречневой муки. Для разведения каш необходимо использовать ту специализированную смесь, которую получает ребенок. Мясной прикорм вводят в питание с 6 месяцев.

Преимущество отдают специализированным детским мясным консервам промышленного выпуска, не содержащим молока и его производных (кролик, цыпленок, говядина, индейка и др.).

Диетотерапия при галактоземии

Основным методом лечения классической галактоземии является диетотерапия, предусматривающая пожизненное исключение из рациона продуктов, содержащих галактозу и лактозу. Необходимо полностью исключить из рациона больного любой вид молока (в том числе женское, коровье, козье, детские молочные смеси и др.) и все молочные продукты, а также тщательно избегать употребления тех продуктов, куда они могут добавляться (хлеб, выпечка, карамель, сладости, маргарины и т.п). Запрещается также использование низколактозных молока и смесей.

Ряд продуктов растительного происхождения содержит олигосахариды - галактозиды (раффинозу, стахиозу), животного происхождения - нуклеопротеины, которые могут быть потенциальными источниками галактозы.

Поскольку в кишечнике всасываются все поступающие с пищей моносахариды (фруктоза, галактоза, манноза и т.п.), то перед организмом встает задача превратить полученные гексозы в глюкозу для ее дальнейшего использования в реакциях метаболизма – происходит превращение сахаров . При дефекте соответствующих ферментов возникает накопление моносахаридов в крови – галактоземия и фруктоземия .

Превращение моносахаров

Цель этого процеса – создание только одного субстрата для реакций метаболизма, а именно α-D-глюкозы, что позволяет сэкономить ресурсы, не образовывать множество ферментов для каждого вида моносахарида. Реакции образования свободной глюкозы протекают в эпителии кишечника и, в основном, в гепатоцитах .

У детей некоторое время после рождения, даже при гипогликемии, в крови отмечается относительный избыток других моносахаридов, например, фруктозы и галактозы, что обычно связано с функциональной незрелостью печени.

Превращение галактозы

Галактоза сначала подвергается фосфорилированию по 1-му атому углерода. Отличительной особенностью является превращение в глюкозу не напрямую, а через синтез УДФ-галактозы из галактозо-1-фосфата. Источником УМФ является УДФ-глюкоза, имеющаяся в клетке. Образованная УДФ-галактоза впоследствии изомеризуется в УДФ-глюкозу и далее ее судьба различна.

Она может:

  • участвовать в реакции переноса УМФ на галактозо-1-фосфат,
  • превращаться в свободную глюкозу и выходить в кровь,
  • отправляться на синтез гликогена .
(обратимость обеих уридил-трансферазных реакций не показана)

Биохимическое усложнение вроде бы простой реакции эпимеризации вызвано, видимо, синтезом УДФ-галактозы из глюкозы в молочной железе для получения лактозы при образовании молока. Также галактоза используется при синтезе соответствующих гексозаминов в гетерополисахаридах.

Нарушения превращения галактозы

Нарушения обмена галактозы могут быть вызваны генетическим дефектом одного из ферментов:

  • галактокиназы , частота дефекта 1:500000,
  • галактозо-1-фосфат-уридилтрансферазы , частота дефекта 1:40000,
  • эпимеразы , частота дефекта менее 1:1000000.

Заболевание, возникающее при этих нарушениях, получило название галактоземия .

Диагностика . Дети отказываются от еды. Концентрация галактозы в крови возрастает до 11,1-16,6 ммоль/л (норма 0,3-0,5 ммоль/л), в крови появляется галактозо-1-фосфат. К лабораторным критериям относятся также билирубинемия, галактозурия, протеинурия, гипераминоацидурия, накопление гликозилированного гемоглобина.

Патогенез . Избыток галактозы превращается в спирт галактитол (дульцитол), накапливающийся в хрусталике и осмотически привлекающий сюда воду. Изменяется солевой состав, нарушается конформация белков хрусталика, что приводит к катаракте в молодом возрасте. Катаракта возможна даже у плодов матерей с галактоземией, употреблявших молоко во время беременности.

При дефекте галактозо-1-фосфат-уридил-трансферазы АТФ постоянно расходуется на фосфорилирование галактозы и дефицит энергии угнетает активность многих ферментов, "токсически" действуя на нейроны, гепатоциты, нефроциты. Как результат возможны задержка психомоторного развития, умственная отсталость, некроз гепатоцитов и цирроз печени. В почках и кишечнике избыток галактозы и ее метаболитов ингибирует всасывание аминокислот.

Основы лечения . Исключение из рациона молока и других источников галактозы позволяет предотвратить развитие патологических симптомов. Однако сохранность интеллекта может быть достигнута только при ранней, не позднее первых 2 месяцев жизни, диагностике и вовремя начатом лечении.

В целом переход фруктозы в глюкозу осуществляется по двум направлениям. Сначала происходит активация фруктозы посредством фосфорилирования либо 6-го атома углерода при участии гексокиназы , либо 1-го атома при участии фруктокиназы .

В печени имеются оба фермента, однако гексокиназа имеет гораздо более низкое сродство к фруктозе и в ней этот путь слабо выражен. Образованный ею фруктозо-6-фосфат далее изомеризуется и глюкозо-6-фосфатаза отщепляет уже ненужный фосфат с получением глюкозы.

Если работает фруктокиназа, то образуется фруктозо-1-фосфат, под действием соответствующей альдолазы он превращается в глицеральдегид и диоксиацетонфосфат. Глицеральдегид фосфорилируется до глицеральдегидфосфата и вместе с диоксиацетонфосфатом они в дальнейших реакциях либо используются в гликолизе , либо в реакциях глюконеогенеза превращаются в фруктозо-6-фосфат и далее в глюкозу.

Особенностью мышц является отсутствие фруктокиназы, поэтому фруктоза в них превращается сразу в фруктозо-6-фосфат и поступает в реакции гликолиза или синтеза гликогена.

Пути метаболизма фруктозы и ее превращение в глюкозу

Особенностью метаболизма фруктозы является то, что фермент фруктокиназа является инсулин-независимым . В результате превращение фруктозы в пировиноградную кислоту и ацетил-SКоА происходит быстрее , чем для глюкозы. Это объясняется "игнорированием" лимитирующей реакции метаболизма глюкозы, катализируемой фосфофруктокиназой . Дальнейший метаболизм ацетил-SКоА в данном случае может привести к избыточному образованию жирных кислот и триацилглицеролов.

Нарушения метаболизма фруктозы

Эссенциальная фруктозурия

Генетический дефект фруктокиназы приводит к доброкачественной эссенциальной фруктозурии , протекающей безо всяких отрицательных симптомов.

Наследственная фруктозурия

Заболевание формируется вследствие наследственных аутосомно-рецессивных дефектов других ферментов обмена фруктозы. Частота 1:20000.

Дефект фруктозо-1-фосфатальдолазы , которая в норме присутствует в печени, кишечнике и корковом веществе почек, проявляется после введения в рацион младенца соков и фруктов, содержащих фруктозу.

Патогенез связан со снижением мобилизации гликогена из-за ингибирования гликогенфосфорилазы фруктозо-1-фосфатом и ослаблением глюконеогенеза, т.к. дефектный фермент способен участвовать в реакциях аналогично фруктозо-1,6-дифосфат-альдолазе. Проявляется заболевание снижением концентрации фосфатов в крови, гиперфруктоземией, тяжелой гипогликемией. Отмечается вялость, нарушения сознания, почечный канальцевый ацидоз.

Диагноз ставится исходя из "непонятного" заболевания печени, гипофосфатемии, гиперурикемии, гипогликемии и фруктозурии. Для подтверждения проводят тест толерантности к фруктозе . Лечение включает диету с ограничением сладостей, фруктов, овощей.

Дефект фруктозо-1,6-дифосфатазы проявляется сходно с предыдущим, но не так тяжело.

Понравилась статья? Поделитесь с друзьями!